Harmonic mappings and its directional convexity

Authors

DOI:

https://doi.org/10.24193/subbmath.2021.4.07

Keywords:

Harmonic functions, half-plane mappings, convexity in one direction, harmonic convolution, directional convexity, Rouche’s theorem.

Abstract

For any $\mu _{j}\ (\mu _{j}\in \mathbb{C},\left\vert \mu _{j}\right\vert
=1,j=1,2)$, we consider the rotations $f_{\mu _{1}}$ and $F_{\mu _{2}}$ of
right half-plane harmonic mappings $f,F\in S_{\mathcal{H}}$ which are CHD
with the prescribed dilatations $\omega _{f}(z)=\left( a-z\right) /\left(
1-az\right) $ for some $a$ $\left( -1<a<1\right) $ and $\omega _{F}(z)=$ $
e^{i\theta }z^{n}$ $\left( n\in \mathbb{N},\theta \in \mathbb{R}\right) $, $\omega _{F}(z)=$ $\left( b-z\right) /\left( 1-bz\right) $, $\omega
_{F}(z)=\left( b-ze^{i\phi }\right) /\left( 1-bze^{i\phi }\right) $ $%
(-1<b<1,\phi \in \mathbb{R})$, respectively. It is proved that the
convolution $f_{\mu _{1}}\ast F_{\mu _{2}}\in S_{\mathcal{H}}$ and is convex
in the direction of $\overline{\mu _{1}\mu _{2}}$ under certain conditions
on the parameters involved.


Mathematics Subject Classification (2010): 31A05, 30C45, 30C55.

References

Beig, S., Ravichandran, V., Convolution and convex combination of harmonic mappings, Bull. Iranian Math. Soc., 45(2019), no. 5, 1467-1486.

Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math., 9(1984), 3-25.

Dorff, M., Convolutions of planar harmonic convex mappings, Complex Variables Theory Appl., 45(2001), no. 3, 263-271.

Dorff, M., Nowak, M., Woloszkiewicz, M., Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ., 57(2012), no. 5, 489-503.

Dorff, M., Rolf, J.S., Anamorphosis, mapping problems, and harmonic univalent functions, in: Explorations in Complex Analysis, 197-269, Classr. Res. Mater. Ser, Math. Assoc. America, Washington, DC.

Kumar, R., et al., Convolution properties of some harmonic mappings in the right half-plane, Bull. Malays. Math. Sci. Soc., 39(2016), no. 1, 439-455.

Kumar, R., Gupta, S., Singh, S., Convolution properties of a slanted right half-plane mapping, Mat. Vesnik, 65(2013), no. 2, 213-221.

Lewy, H., On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 42(1936), no. 10, 689-692.

Li, Y., Liu, Z., Convolutions of harmonic right half-plane mappings, Open Math., 14(2016), no. 1, 789-800.

Li, L., Ponnusamy, S., Convolutions of slanted half-plane harmonic mappings, Analysis (Munich), 33(2013), no. 2, 159-176.

Li, L., Ponnusamy, S., Solution to an open problem on convolutions of harmonic mappings, Complex Var. Elliptic Equ., 58(2013), no. 12, 1647-1653.

Li, L., Ponnusamy, S., Note on the convolution of harmonic mappings, Bull. Aust. Math. Soc., 99(2019), no. 3, 421-431.

Liu, Z., Ponnusamy, S., Univalency of convolutions of univalent harmonic right half-plane mappings, Comput. Methods Funct. Theory, 17(2017), no. 2, 289-302.

Pommerenke, C., On starlike and close-to-convex functions, Proc. London Math. Soc., 13(1963), no. 3, 290-304.

Rahman, Q.I., Schmeisser, G., Analytic Theory of Polynomials, London Mathematical Society Monographs. New Series, 26, The Clarendon Press, Oxford University Press, Oxford, 2002.

Downloads

Published

2021-12-30

How to Cite

SHARMA, P., & Omendra MISHRA, O. M. (2021). Harmonic mappings and its directional convexity. Studia Universitatis Babeș-Bolyai Mathematica, 66(4), 677–690. https://doi.org/10.24193/subbmath.2021.4.07

Issue

Section

Articles

Similar Articles

<< < 13 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.