On a property of the generalized Brauer pairs

Authors

  • Tiberiu COCONEȚ Babe¸s-Bolyai University, Faculty of Economics and Business Administration, 58-60, Teodor Mihali Street, 400591 Cluj-Napoca, Romania Department of Mathematics, Technical University of Cluj-Napoca, Str. G. Bari¸tiu 25, Cluj-Napoca 400027, Romania, e-mail: tiberiu.coconet@math.ubbcluj.ro

DOI:

https://doi.org/10.24193/subbmath.2021.4.01

Keywords:

Blocks, Brauer pairs, defect groups, normal subgroups, graded algebras, permutation algebras.

Abstract

In this paper we give a generalization of a result of Puig and Zhou to the context of group graded algebras. We use this generalization for an alternative approach of the proof of a result involving group graded basic Morita equivalences.

Mathematics Subject Classification (2010): 20C20, 20C05.

References

Broue, M., Puig, L., Characters and local structure in G-algebras, J. Algebra, 63 (1980), 306-317.

Coconet, T., Marcus, A., Group graded basic Morita equivalences, J. Algebra, 489(2017), 1-24.

Coconet, T., Marcus, A., Remarks on the extended Brauer quotient, J. Algebra, 491(2017), 78-89.

Coconet, T., Todea, C.-C., The extended Brauer quotient of N-interior G-algebras, J. Algebra, 396(2013), 10-17.

Puig, L., Zhou, Y., A local property of basic Morita equivalences, Math. Z., 256(2007), 551-562.

Puig, L., Zhou, Y., A local property of basic Rickard equivalences, J. Algebra, 322(2009), 1946-1973.

Thevenaz, J., G-Algebras and Modular Representation Theory, Clarendon Press, Oxford, 1995.

Todea, C.-C., On some saturated triples and hyperfocal subgroups, J. Algebra, 499 (2018), 358-374.

Downloads

Published

2021-12-30

How to Cite

COCONEȚ, T. (2021). On a property of the generalized Brauer pairs. Studia Universitatis Babeș-Bolyai Mathematica, 66(4), 605–611. https://doi.org/10.24193/subbmath.2021.4.01

Issue

Section

Articles

Similar Articles

<< < 1 2 3 

You may also start an advanced similarity search for this article.