On a property of the generalized Brauer pairs
DOI:
https://doi.org/10.24193/subbmath.2021.4.01Keywords:
Blocks, Brauer pairs, defect groups, normal subgroups, graded algebras, permutation algebras.Abstract
In this paper we give a generalization of a result of Puig and Zhou to the context of group graded algebras. We use this generalization for an alternative approach of the proof of a result involving group graded basic Morita equivalences.
Mathematics Subject Classification (2010): 20C20, 20C05.
References
Broue, M., Puig, L., Characters and local structure in G-algebras, J. Algebra, 63 (1980), 306-317.
Coconet, T., Marcus, A., Group graded basic Morita equivalences, J. Algebra, 489(2017), 1-24.
Coconet, T., Marcus, A., Remarks on the extended Brauer quotient, J. Algebra, 491(2017), 78-89.
Coconet, T., Todea, C.-C., The extended Brauer quotient of N-interior G-algebras, J. Algebra, 396(2013), 10-17.
Puig, L., Zhou, Y., A local property of basic Morita equivalences, Math. Z., 256(2007), 551-562.
Puig, L., Zhou, Y., A local property of basic Rickard equivalences, J. Algebra, 322(2009), 1946-1973.
Thevenaz, J., G-Algebras and Modular Representation Theory, Clarendon Press, Oxford, 1995.
Todea, C.-C., On some saturated triples and hyperfocal subgroups, J. Algebra, 499 (2018), 358-374.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.