On a Fredholm-Volterra integral equation
DOI:
https://doi.org/10.24193/subbmath.2021.3.12Keywords:
Fredholm-Volterra integral equation, existence, uniqueness, contraction, fiber contraction, Maia theorem, successive approximation, fixed point, Picard operator.Abstract
In this paper we give conditions in which the integral equation
x(t) =r c K(t, s, x(s))ds + a r t H(t, s, x(s))ds + g(t), t ∈ [a, b], a
where a < c < b, K ∈ C([a, b] × [a, c] × B, B), H ∈ C([a, b] × [a, b] × B, B), g ∈ C([a, b], B), with B a (real or complex) Banach space, has a unique solution in C([a, b], B). An iterative algorithm for this equation is also given.
Mathematics Subject Classification (2010): 45N05, 47H10, 47H09, 54H25.
References
Bolojan, O.-M., Fixed Point Methods for Nonlinear Differential Systems with Nonlocal Conditions, Casa Cartii de Stiinta, Cluj-Napoca, 2013.
Boucherif, A., Differential equations with nonlocal boundary conditions, Nonlinear Anal., 47(2001), 2419-2430.
Boucherif, A., Precup, R., On the nonlocal initial value problem for first order differential equations, Fixed Point Theory, 4(2003), 205-212.
Filip, A.-D., Fixed Point Theory in Kasahara Spaces, Casa Cartii de Stiinta, Cluj-Napoca, 2015.
Nica, O., Nonlocal initial value problems for first order differential systems, Fixed Point Theory, 13(2012), 603-612.
Petrusel, A., Rus, I.A., A class of functional integral equations with applications to a bilocal problem, 609-631. In: Topics in Mathematical Analysis and Applications (Rassias, Th.M. and T´oth, L., Eds.), Springer, 2014.
Precup, R., Methods in Nonlinear Integral Equations, Kluwer, Dordrecht-Boston- London, 2002.
Rus, I.A., On a fixed point theorem of Maia, Stud. Univ. Babe¸s-Bolyai Math., 22(1977), no.1, 40-42.
Rus, I.A., Picard operators and applications, Sci. Math. Jpn., 58(2003), 191-219.
Rus, I.A., Abstract models of step method which imply the convergence of successive approximations, Fixed Point Theory, 9(2008), no. 1, 293-307.
Rus, I.A., Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle, Adv. Theory Nonlinear Anal. Appl., 3(2019), no. 3, 111-120.
Rus, I.A., S¸erban, M.-A., Basic problems of the metric fixed point theory and the rele- vance of a metric fixed point theorem, Carpathian J. Math., 29(2013), no. 2, 239-258.
Serban, M.-A., Teoria Punctului Fix pentru Operatori Definiti pe Produs Cartezian, Presa Univ. Clujeana, Cluj-Napoca, 2002.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.