Differential subordination for Janowski functions with positive real part
DOI:
https://doi.org/10.24193/subbmath.2021.3.04Keywords:
Subordination, univalent functions, Carath´eodory functions, starlike functions, Janowski function, admissible function.Abstract
Theory of differential subordination provides techniques to reduce differential subordination problems into verifying some simple algebraic condition called admissibility condition. We exploit the first order differential subordination theory to get several sufficient conditions for function satisfying several differential subordinations to be a Janowski function with positive real part. As applications, we obtain sufficient conditions for normalized analytic functions to be Janowski starlike functions.
Mathematics Subject Classification (2010): 30C45.
References
Ahuja, O.P., Kumar, S., Ravichandran, V., Applications of first order differential subor- dination for functions with positive real part, Stud. Univ. Babe¸s-Bolyai Math., 63(2018), no. 3, 303-311.
Ali, R.M., Ravichandran, V., Seenivasagan, N., On Bernardi’s integral operator and the Briot-Bouquet differential subordination, J. Math. Anal. Appl., 324(2006), 663-668.
Ali, R.M., Ravichandran, V., Seenivasagan, N., Sufficient conditions for Janowski star- likeness, Int. J. Math. Math. Sci., 2007, Art. ID 62925, 7 pp.
Anand, S., Kumar, S., Ravichandran, V., First-order differential subordinations for Janowski starlikeness, in ”Mathematical Analysis. I. Approximation Theory”, 185-196, Springer Proc. Math. Stat., 306, Springer, Singapore, 2020.
Bohra, N., Kumar, S., Ravichandran, V., Some special differential subordinations, Hacet. J. Math. Stat., 48(2019), no. 4, 1017-1034.
Bulboaca˘, T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
Cho, N.E., Kumar, S., Kumar, V., Ravichandran, V., Differential subordination and radius estimates for starlike functions associated with the Booth lemniscate, Turkish J. Math., 42(2018), no. 3, 1380-1399.
Cho, N.E., Kumar, S., Kumar, V., Ravichandran, V., Srivastava, H.M., Starlike functions related to the Bell numbers, Symmetry, 11(2019), no. 2, Article 219, 17 pp.
Chojnacka, O., Lecko, A., Differential subordination of a harmonic mean to a linear function, Rocky Mountain J. Math., 48(2018), no. 5, 1475-1484.
Gandhi, S., Kumar, S., Ravichandran, V., First order differential subordinations for Caratheodory functions, Kyungpook Math. J., 58(2018), 257-270.
Goodman, A.W., Univalent Functions, Vol. II, Mariner Publishing Co., Inc., Tampa, FL, 1983.
Janowski, W., Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23(1970/1971), 159-177.
Kanas, S., Techniques of the differential subordination for domains bounded by conic sections, Int. J. Math. Math. Sci., 2003, no. 38, 2389-2400.
Kanas, S., Differential subordination related to conic sections, J. Math. Anal. Appl., 317(2006), no. 2, 650-658.
Kanas, S., Lecko, A., Differential subordination for domains bounded by hyperbolas, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 175(1999), no. 23, 61-70.
Kim, I.H., Sim, Y.J., Cho, N.E., New criteria for Carath´eodory functions, J. Inequal. Appl., 2019, 2019:13.
Kumar, S., Ravichandran, V., Subordinations for functions with positive real part, Complex Anal. Oper. Theory, 12(2018), no. 5, 1179-1191.
Kumar, S.S., Kumar, V., Ravichandran, V., Cho, N.E., Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Inequal. Appl. 2013(2013), 176, 13 pp.
Miller, S.S., Mocanu, P.T., On some classes of first-order differential subordinations, Michigan Math. J., 32(1985), no. 2, 185-195.
Miller, S.S., Mocanu, P.T., Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.
Nunokawa, M., Obradovi´c, M., Owa, S., One criterion for univalency, Proc. Amer. Math. Soc., 106(1989), no. 4, 1035-1037.
Ravichandran, V., Sharma, K., Sufficient conditions for starlikeness, J. Korean Math. Soc., 52(2015), no. 4, 727-749.
Robertson, M.S., Certain classes of starlike functions, Michigan Math. J., 32(1985), no. 2, 135-140.
Seoudy, T.M., Aouf, M.K., Classes of admissible functions associated with certain integral operators applied to meromorphic functions, Bull. Iranian Math. Soc., 41(2015), no. 4, 793-804.
Sharma, K., Ravichandran, V., Applications of subordination theory to starlike functions, Bull. Iranian Math. Soc., 42(2016), no. 3, 761-777.
Tuneski, N., Bulboaca˘, T., Sufficient conditions for bounded turning of analytic functions, Ukra¨ın. Mat. Zh., 70(2018), no. 8, 1118-1127.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.