Sufficient conditions for analytic functions defined by Frasin differential operator
DOI:
https://doi.org/10.24193/subbmath.2021.2.11Keywords:
Analytic functions, differential operator.Abstract
In this paper, by making use of a new differential operator, we derive a new sufficient conditions for analytic functions in the open unit disk. Several corollaries of the main result are also considered.
Mathematics Subject Classification (2010): 30C45.
References
Al-Oboudi, F.M., On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., (2004), no.25-28, 1429-1436.
Aouf, M.K., Neighorhoods of certain classes of analytic functions with negative coefficients, Internat. J. Math., Vol. 2006, Art. ID 38258, 1-6.
Aouf, M.K., On certain multivalent functions with negative coefficients defined by using a differential operator, Mat. Vesnik, 62(2010), no. 1, 23-35.
Aouf, M.K., Hossen, H.M., Lashin, A.Y., An application of certain integral operators, J. Math. Anal. Appl., 248(2000), 475-481.
El-Ashwah, R.M., Aouf, M.K., Some properties of new integral operator, Acta Universitatis Apulensis, 24(2010), 51-61.
El-Ashwah, R.M., Aouf, M.K., Bulboaca, T., An application of generalized integral operator, Stud. Univ. Babes-Bolyai Math., 57(2012), no. 2, 189-193.
Frasin, B.A., A new differential operator of analytic functions involving binomial series, Bol. Soc. Paran. Mat. (in press).
Miller, S.S., Mocanu, P.T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289-305.
Salagean, G., Subclasses of univalent functions, in ”Complex Analysis: Fifth Romanian - Finnish Seminar”, Part I (Bucharest, 1981), 362-372, Lecture Notes in Mathematics, Vol. 1013, Springer-Verlag, Berlin/New York, 1983.
Yousef, F., Al-Hawary, T., Murugusundaramoorthy, G., Fekete-Szego functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator, Afrika Matematika, (2019), 1-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.