Sufficient conditions for analytic functions defined by Frasin differential operator

Authors

DOI:

https://doi.org/10.24193/subbmath.2021.2.11

Keywords:

Analytic functions, differential operator.

Abstract

In this paper, by making use of a new differential operator, we derive a new sufficient conditions for analytic functions in the open unit disk. Several corollaries of the main result are also considered.


Mathematics Subject Classification (2010): 30C45.

References

Al-Oboudi, F.M., On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., (2004), no.25-28, 1429-1436.

Aouf, M.K., Neighorhoods of certain classes of analytic functions with negative coefficients, Internat. J. Math., Vol. 2006, Art. ID 38258, 1-6.

Aouf, M.K., On certain multivalent functions with negative coefficients defined by using a differential operator, Mat. Vesnik, 62(2010), no. 1, 23-35.

Aouf, M.K., Hossen, H.M., Lashin, A.Y., An application of certain integral operators, J. Math. Anal. Appl., 248(2000), 475-481.

El-Ashwah, R.M., Aouf, M.K., Some properties of new integral operator, Acta Universitatis Apulensis, 24(2010), 51-61.

El-Ashwah, R.M., Aouf, M.K., Bulboaca, T., An application of generalized integral operator, Stud. Univ. Babes-Bolyai Math., 57(2012), no. 2, 189-193.

Frasin, B.A., A new differential operator of analytic functions involving binomial series, Bol. Soc. Paran. Mat. (in press).

Miller, S.S., Mocanu, P.T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289-305.

Salagean, G., Subclasses of univalent functions, in ”Complex Analysis: Fifth Romanian - Finnish Seminar”, Part I (Bucharest, 1981), 362-372, Lecture Notes in Mathematics, Vol. 1013, Springer-Verlag, Berlin/New York, 1983.

Yousef, F., Al-Hawary, T., Murugusundaramoorthy, G., Fekete-Szego functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator, Afrika Matematika, (2019), 1-9.

Downloads

Published

2022-10-17

How to Cite

AL-HAWARY, T. (2022). Sufficient conditions for analytic functions defined by Frasin differential operator. Studia Universitatis Babeș-Bolyai Mathematica, 66(2), 353–359. https://doi.org/10.24193/subbmath.2021.2.11

Issue

Section

Articles

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.