Asymptotic behavior of inexact infinite products of nonexpansive mappings

Authors

  • Simeon REICH The Technion – Israel Institute of Technology, Department of Mathematics, 32000 Haifa, Israel, e-mail: sreich@technion.ac.il
  • Alexander J. ZASLAVSKI The Technion – Israel Institute of Technology, Department of Mathematics, 32000 Haifa, Israel, e-mail: ajzasl@technion.ac.il

DOI:

https://doi.org/10.24193/subbmath.2021.1.12

Keywords:

Complete metric space, fixed point, infinite product, nonexpansive mapping.

Abstract

We analyze the asymptotic behavior of inexact infinite products of non- expansive mappings, which take a nonempty closed subset of a complete metric space into the space, in the case where the errors are sufficiently small.

Mathematics Subject Classification (2010): 47H09, 47H10, 54E50.

References

Banach, S., Sur les op´erations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3(1922), 133-181.

Betiuk-Pilarska, A., Domınguez Benavides, T., Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices, Pure Appl. Func. Anal., 1(2016), 343-359.

de Blasi, F.S., Myjak, J., Reich, S., Zaslavski, A.J., Generic existence and approximation of fixed points for nonexpansive set-valued maps, Set-Valued Var. Anal., 17(2009), 97- 112.

Bruck, R.E., Kuczumow, T., Reich, S., Convergence of iterates of asymptotically non- expansive mappings in Banach spaces with the uniform Opial property, Colloq. Math., 65(1993), 169-179.

Butnariu, D., Reich, S., Zaslavski, A. J., Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces, Fixed Point Theory Appl., Yokohama Publishers, Yokohama, 2006, 11-32.

Cegielski, A., Reich, S., Zalas, R., Regular sequences of quasi-nonexpansive operators and their applications, SIAM J. Optim., 28(2018), 1508-1532.

Censor, Y., Zaknoon, M., Algorithms and convergence results of projection methods for inconsistent feasibility problems: a review, Pure Appl. Func. Anal., 3(2018), 565-586.

Dye, J.M., Kuczumow, T., Lin, P.-K., Reich, S., Convergence of unrestricted products of nonexpansive mappings in spaces with the Opial property, Nonlinear Anal., 26(1996), 767-773.

Dye, J.M., Reich, S., Unrestricted iterations of nonexpansive mappings in Hilbert space, Nonlinear Anal., 18(1992), 199-207.

Dye, J.M., Reich, S., Unrestricted itarations of nonexpansive mappings in Banach spaces, Nonlinear Anal., 19(1992), 983-992.

Gibali, A., A new split inverse problem and an application to least intensity feasible solutions, Pure Appl. Funct. Anal., 2(2017), 243-258.

Goebel, K., Kirk, W.A., Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.

Goebel, K., Kirk, W.A., Classical Theory of Nonexpansive Mappings, Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, 49-91.

Goebel, K., Reich, S., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Map- pings, Marcel Dekker, New York and Basel, 1984.

Granas, A., Dugundji, J., Fixed Point Theory, Springer, New York, 2003.

Jachymski, J., Extensions of the Dugundji-Granas and Nadler’s theorems on the continuity of fixed points, Pure Appl. Funct. Anal., 2(2017), 657-666.

Kirk, W.A., Contraction Mappings and Extensions, Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, 1-34.

Kubota, R., Takahashi, W., Takeuchi, Y., Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications, Pure Appl. Func. Anal., 1(2016), 63-84.

Plant, A.T., Reich, S., The asymptotics of nonexpansive iterations, J. Funct. Anal., 54(1983), 308-319.

Pustylnik, E., Reich, S., Infinite products of arbitrary operators and intersections of subspaces in Hilbert space, J. Approx. Theory, 78(2014), 91-102.

Pustylnyk, E., Reich, S., Zaslavski, A.J., Convergence to compact sets of inexact orbits of nonexpansive mappings in Banach and metric spaces, Fixed Point Theory Appl., 2008(2008), 1-10.

Pustylnik, E., Reich, S., Zaslavski, A.J., Inexact infinite products of nonexpansive map- pings, Numer. Funct. Anal. Optim., 30(2009), 632-645.

Reich, S., The fixed point property for nonexpansive mappings I, Amer. Math. Monthly, 83(1976), 266-268.

Reich, S., The fixed point property for nonexpansive mappings II, Amer. Math. Monthly, 87(1980), 292-294.

Reich, S., The alternating algorithm of von Neumann in the Hilbert ball, Dynam. Systems Appl., 2(1993), 21-25.

Reich, S., Salinas, Z., Weak convergence of infinite products of operators in Hadamard spaces, Rend. Circ. Mat. Palermo, 85(2016), 65-71.

Reich, S., Zaslavski, A.J., Well-posedness of fixed point problems, Far East J. Math. Sci., Special Volume (Functional Analysis and Its Applications), Part III (2001), 393-401.

Reich, S., Zaslavski, A.J., Generic Aspects of Metric Fixed Point Theory, Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, 557-575.

Reich, S., Zaslavski, A.J., Convergence to attractors under perturbations, Commun. Math. Anal., 10(2011), 57-63.

Reich, S., Zaslavski, A.J., Genericity in Nonlinear Analysis, Springer, New York, 2014. [31] Reich, S., Zaslavski, A.J., Asymptotic behavior of infinite products of nonexpansive mappings in metric spaces, Z. Anal. Anwend., 33(2014), 101-117.

Reich, S., Zaslavski, A.J., Convergence to attractors of nonexpansive set-valued map- pings, Commun. Math. Anal., 22(2019), 51-60.

Reich, S., Zaslavski, A.J., Asymptotic behavior of inexact orbits of nonexpansive map- pings, Topol. Methods Nonlinear Anal., accepted for publication.

Rezapour, S., Yao, J.-C., Zakeri, S.H., A strong convergence theorem for quasi- contractive mappings and inverse strongly monotone mappings, Pure Appl. Funct. Anal., 5(2020), 733-745.

Takahashi, W., The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces, Pure Appl. Funct. Anal., 2(2017), 685-699.

Takahashi, W., A general iterative method for split common fixed point problems in Hilbert spaces and applications, Pure Appl. Funct. Anal., 3(2018), 349-369.

Takahashi, W., A strong convergence theorem for two infinite sequences of nonlinear mappings in Hilbert spaces and applications, Pure Appl. Funct. Anal., 4(2019), 629-647.

Takahashi, W., Weak and strong convergence theorems for two generic generalized non-spreading mappings in Banach spaces, Pure Appl. Funct. Anal., 5(2020), 747-767.

Takahashi, W., Wen, C.-F., Yao, J.-C., A strong convergence theorem by Halpern type iteration for a finite family of generalized demimetric mappings in a Hilbert space, Pure Appl. Funct. Anal., 4(2019), 407-426.

Zaslavski, A.J., Approximate Solutions of Common Fixed Point Problems, Springer Optim. Appl., Springer, Cham, 2016.

Zaslavski, A.J., Algorithms for Solving Common Fixed Point Problems, Springer Optim. Appl., Springer, Cham, 2018.

Downloads

Published

2021-03-30

How to Cite

REICH, S., & ZASLAVSKI, A. J. (2021). Asymptotic behavior of inexact infinite products of nonexpansive mappings. Studia Universitatis Babeș-Bolyai Mathematica, 66(1), 127–138. https://doi.org/10.24193/subbmath.2021.1.12

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.