Datko criteria for uniform instability in Banach spaces
DOI:
https://doi.org/10.24193/subbmath.2021.1.10Keywords:
Evolution operator, uniform instability, Datko criteria.Abstract
The main objective of this paper is to present some necessary and sufficient conditions of Datko type for the uniform exponential and uniform poly- nomial instability concepts for evolution operators in Banach spaces.
Mathematics Subject Classification (2010): 47D06, 47B01.
References
Barreira, L., Valls, C., Polynomial growth rates, Nonlinear Anal., 71(2009), 5208-5219.
Bento, A., Silva, C., Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal., 257(2009), 122-148.
Biris, L., On uniform exponential instability property of evolution operators in Banach spaces, An. Univ. Vest Timis. Ser. Mat.-Inform. 47(2009), no. 1, 3-9.
Boruga, R., Megan, M., On Some Concepts Regarding the Polynomial Behaviors for Evolution Operators in Banach Spaces, International Symposium Research and Education in an Innovation Era Conference, Mathematics and Computer Science, 2018, 18-24.
Datko, R., Uniform Asymptotic Stability of Evolutionary Processes in a Banach Space, SIAM J. Math. Anal., 3(1972), 428-445.
Hai, P.V., Polynomial Stability and Polynomial Instability for Skew-Evolution Semiflows, Results Math., 74(2019), no. 4, art. 175.
Megan, M., Boruga (Toma), R., Barbashin conditions for uniform instability of evolution operators, (to appear in Stud. Univ. Babes-Bolyai Math.).
Megan, M., Sasu, A.L., Sasu, B., The Asymptotic Behavior of Evolution Families, Mirton Publishing House, 2003.
Megan, M., Sasu, A.L., Sasu, B., Banach function spaces and exponential instability of evolution families, Arch. Math. (Brno), 39(2003), 277-286.
Megan, M., Stoica, C., Exponential instability of skew-evolution semiflows in Banach spaces, Stud. Univ. Babes-Bolyai Math., 53(2008), no. 1, 17-24.
Mihit, C.L., On uniform h-stability of evolution operators in Banach spaces, Theory Appl. Math. Comput. Sci., 6(2016), 19-27.
Popa, I.L., Nonuniform exponential instability for evolution operators in Banach spaces, Proc. of the 12th Symposium of Math. and its Appl. ”Politehnica” Univ. of Timisoara, November 5-7, 2009.
R˘amneantu, M.L., Megan, M., Ceausu, T., Polynomial instability of evolution operators in Banach spaces, Carpathian J. Math., 29(2013), no. 1, 77-83.
Stoica, C., Megan, M., Uniform exponential instability of evolution operators in Banach spaces, An. Univ. Vest Timis. Ser. Mat.-Inform., 44(2006), no. 2, 143-148.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.