On the existence of a periodic solution of the Liénard system

Authors

DOI:

https://doi.org/10.24193/subbmath.2021.1.04

Keywords:

Liénard system, a periodic solution.

Abstract

The Li\'{e}nard system $\frac{dx}{dt}=y,\quad \frac{dy}{dt}=-f(x)y-g(x)$ is considered.

Under some assumptions on functions $f(x)$ and $g(x)$, we estimate the domain of location of the unique stable limit cycle of the Li\'{e}nard system.This estimation has the form $\alpha_2<x<\alpha_1$, where $\alpha_1$ and $\alpha_2$ are respectively the positive the negative roots of the equation $\int_0^{\alpha}\left[\int_0^xf(s)ds\right] g(x)dx=0$.

Mathematics Subject Classification (2010): 34C05, 34C07, 34C25, 34C15, 34A26.

References

Albarakati, W.A., Lloyd, N.G., Pearson, J.M., Transformation to Lienard form, Electronic Journal of Differential Equations, 76(2000), 1-11.

Bowman, T.T., Periodic solutions of Lienard systems with symmetries, Nonlinear Analysis, 2(4)(1978), 457-464.

Carletti, T., Villari, G., A note on existence and uniqueness of limit cycles for Lienard systems, Journal of Mathematical Analysis and Applications, 307(2005), no. 2, 763-773.

Filippov, A.F., A sufficient condition for the existence of a stable limit cycle for the equation of the second order, (in Russian), Sbornik: Mathematics, 30(1952), no. 1, 171-180.

Ignat'ev, A.O., Kirichenko, V.V., On necessary conditions for global asymptotic stability of equilibrium for the Lienard equation, Mathematical Notes, 93(2013), no. 1-2, 75-82.

Levinson, N., Smith, O., A general equation for relaxation oscillations, Duke Mathematical Journal, 9(1942), no. 2, 382-403.

Lienard, A., Etude des oscillations entretenues, Revue Generale de L'electricite, 23(1928), 901-912.

Lienard, A., Etude des oscillations entretenues, Revue Generale de L'electricite, 23(1928), 946-954.

Lynch, S., Christopher, C.J., Limit cycles in highly non-linear differential equations, Journal of Sound and Vibration, 224(1999), no. 3, 505-517.

Neumann, D.A., Sabbagh, L., Periodic solutions of Lienard systems, Journal of Mathematical Analysis and Applications, 62(1978), no. 1, 148-156.

Odani, K., Existence of Exactly N Periodic Solutions for Lienard Systems, Funkcialaj Ekvacioj, 39(1996), 217-234.

van der Pol, B., On relaxation-oscillations, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 2(1927), 978-992.

Sabatini, M., On the period function of Lienard systems, Journal of Differential Equation, 152(1999), 467-487.

Sabatini, M., Villari, G., On the uniqueness of limit cycles for Lienard equation: the legacy of G. Sansone, Matematiche (Catania), 65(2010), no. 2, 201-214.

Sugie, J., Hara, T., Non-existence of periodic solutions of the Lienard system, Journal of Mathematical Analysis and Applications, 159(1991), no. 1, 224-236.

Downloads

Published

2021-03-30

How to Cite

IGNATYEV, A. (2021). On the existence of a periodic solution of the Liénard system. Studia Universitatis Babeș-Bolyai Mathematica, 66(1), 47–53. https://doi.org/10.24193/subbmath.2021.1.04

Issue

Section

Articles