Influence of soil depth on seedling growth and development of Amaranthus viridis L. after amendment with organic fertilizer

Authors

  • Beckley IKHAJIAGBE Dept of Plant Biology and Biotechnology, University of Benin, Benin City, Nigeria. ✉Corresponding author, E-mail: beckley.ikhajiagbe@uniben.edu https://orcid.org/0000-0003-2834-7447
  • Augustine W. OJANIKELE Department of Surveying and Geoinformatics, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
  • Barka P. MSHELMBULA Dept. of Botany, Federal University, Lafia, Nigeria https://orcid.org/0000-0003-0338-8349
  • Gloria O. OMOREGIE Department of Environmental Management and Toxicology, Federal University of Petroleum Resources Effunrun, Delta State, Nigeria https://orcid.org/0000-0001-7782-003X
  • Moteniola C. ADEBIYI Dept of Plant Biology and Biotechnology, University of Benin, Benin City, Nigeria https://orcid.org/0000-0002-0976-1143

DOI:

https://doi.org/10.24193/subbbiol.2025.1.10

Keywords:

soil horison, food waste manure, cow dung manure, nutrient availability, foliar chlorosis

Abstract

The implications of applying organic fertilizers made from dried cow dung and food waste on the seedling development and growth of Amaranthus viridis at different soil horizons was examined in the current study. The experiment was set up in a completely randomized design, with 6 profile depths x 3 fertilizer treatments x 3 replicates each, totaling 54 bowls. The set up was left for 5 weeks. The findings demonstrated that cow dung manure provided adequate plant nutrients for enhancing seedling growth A. viridis. Although 0.05 g seeds of A. viridis was sown in the bowls, emergence capacities under varying soil conditions differed. Amending the soils with food waste manure hampered emergence capacities of the test plant. There were only six (06) sprouts at the first week compared to 46 in the control. Despite the observation that soil horizon and organic fertilizer application had no discernible effect on the root length of 5 - week - old seedlings (which varied between 1.3 cm and 2.3 cm), the use of manure was associated with a decrease in foliar chlorosis incidence. Without manure, foliar chlorotic incidence was 58 % in the 61 – 75 cm soil profile depth, compared to 35.0 – 35.2 % when soils were amended with either cow - dung or dried food waste manure. Ultimately, while deeper soil horizons initially posed challenges for growth, soil amendment successfully alleviated these unfavorable conditions.

Article history: Received 24 November 2024; Revised 26 April 2025;
Accepted 26 April 2025; Available online 25 June 2025

References

Baxter, N.M., Williamson, J.R. (2001). Know your Soils - Part 1: Introduction to Soils. State of Victoria, Department of Natural Resources and Environment, Bendigo.

Bensch, E.A. (2003). Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) in soybean. Weed Sci., 51(1), 37 - 43.

Blum, W.E.H., Warkentin, B.P. (2006). Soil, human society and the environment. In: Frossard, E. (eds.). Functions of Soils for Human Societies and the Environment. Geol. Soc. Spec. Publ., London, 1 - 8. https://doi.org/10.1144/GSL.SP.2006.266.01.01

Blunden, G., Yang, M., Janicsak, G., Mathe, I., Carabot Cuervo, A. (1999). Betaine distribution in the Amaranthaceae. Biochem. Syst. Ecol., 27(1), 87 - 92.

Bratovcic, A., Zohorovic, M., Odobasic, A., Sestan, I. (2018). Efficiency of food waste as an organic fertilizer. Int. J. Eng. Sci. Res. Technol., 7(6), 527 - 530. https://doi.org/10.5281/zenodo.1299043

Brenan, J.P.M. (1981). The genus Amaranthus in southern Africa. J. S. Afr. Bot., 47(3), 451 - 492. https://www.cabidigitallibrary.org/doi/full/10.5555/19812335778

Cheesebrough, M. (2000). Medical laboratory Manual for Tropical Countries (Vol. 2). Butterworth - Heinemann. ISBN: 0750646336

Dalziel, J.M. (1937). The Useful Plants of West Tropical Africa. Whitefriars Press Ltd, London.

Diacono, M., Montemurro, F. (2010). Long - term effects of organic amendments on soil fertility: A review. Agron. Sustain. Dev., 30(2), 401 - 422. https://doi.org/10.1051/agro/2009064

Diacono, M., Montemurro, F. (2011). Long - term effects of organic amendments on soil fertility. In: Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P. (eds.). Sustainable Agriculture. Springer, Dordrecht, 2 - 5. https://doi.org/10.1007/978-94-007-0394-0

Eluwa, M.C. (1977). Studies on G. rhomboidalis (Boheman) (Coleoptera: Curculionidae), a pest of African spinach. J. Nat. Hist., 11(3), 417 - 424. https://doi.org/10.1080/00222937700770191

Girotto, F., Alibardi, L., Cossu, R. (2015). Food waste generation and industrial uses: A review. Waste Manag., 77, 98 - 113. https://doi.org/10.1016/j.wasman.2015.07.002

Gong, B., Chen, B. (2011). The regulation analysis of low - carbon orientation for China land use. In: Li, D., Liu, Y. (eds.). Computer and Computing Technologies in Agriculture. Springer, Berlin/Heidelberg, 602 - 609.

Gong, Z., Chen, X. (2011). Soil science and sustainable development. J. Integr. Agric., 10(2), 147 - 155.

Grubben, G.J.H., Denton, O.A. (2004). Plant Genetic Resources of Tropical Africa 2: Vegetable. PROTA Foundation, Wageningen, 205 - 213.

Jiang, H., Han, X., Zou, W., Hao, X., Zhang, B. (2018). Seasonal and long - term changes in soil properties and organic carbon fractions as affected by manure application rates in the Mollisol Region of Northeast China. Agric. Ecosyst. Environ., 268, 133 - 143. https://doi.org/10.1016/j.agee.2018.09.003

Jin, C., Zheng, S., He, Y., Di, Z., Zhou, Z. (2005). Lead contamination in tea garden soils and factors affecting its bioavailability. Chemosphere, 59(8), 51 - 90. https://doi.org/10.1016/j.chemosphere.2005.01.066

Joffe, J.S. (1929). Soil profile studies: Soil as an independent body and soil morphology. Soil Sci., 28(1), 39 - 54.

Kumar, A. (2020). Organic fertilizers for sustainable agriculture. J. Clean. Prod., 286, 122193. https://doi.org/10.1016/j.jclepro.2020.122193

Kutílek, M. (1978). Vodohospodářská pedologie [Water pedology]. 2. ed. Praha: SNTL/ ALFA, 296 pp.

Lal, R. (2015). Soil erosion and carbon dynamics. Soil Tillage Res., 153, 43 - 54. https://doi.org/10.1016/j.still.2015.04.002

Lee, J.R., Hong, G.Y., Dixit, A., Chung, J.W., Ma, K.H., Lee, J.H., Park, Y.J. (2008). Characterization of microsatellite loci developed for Amaranthus hypochondriacus and their cross - amplification in wild species. Conserv. Genet., 9(1), 243 - 246. https://doi.org/10.1007/s10592-007-9364-5

Morton, J.F. (1981). Atlas of Medicinal Plants of Middle America, Bahamas to Yucatan. Charles C Thomas. ISBN: 0398038223

Oluwatosin, G.A., Ojo Atere, J.O. (2001). Influence of topographic position on crop responses to different rates of fertilizers in south western Nigeria. Moor J. Agric., 1 - 7.

Papargyropoulou, E., Lozano, R., Steinberger, J.K., Wright, N., Ujang, Z. (2014). The food waste hierarchy as a framework for the management of food surplus and food waste. J. Clean. Prod., 76, 106 - 115. https://doi.org/10.1016/j.jclepro.2014.04.020

Pepper, I.L., Gerba, C.P., Newby, D.T., Rice, C.W. (2009). Soil: A public health threat or savior? Crit. Rev. Environ. Sci. Technol., 39, 416 - 423. https://doi.org/10.1080/10643380802004066

Pimentel, D. (2006). Soil erosion: A food and environmental threat. Environ. Dev. Sustain., 8(1), 119 - 137.

Rice, T.D. (1928). What is a soil series? Soil Sci., 9, 125 - 130.

Rodriguez, B.J.I., Paz, O., Verdecia, G.J.L. (1983). Study of possible agents in the dissemination of weed seeds. Centro Agricola, 10(1), 55 - 65.

Salles, M.S., Lombardo de Barros, C.S., Lemos, R.A., Pilati, C. (1991). Perirenal edema associated with Amaranthus spp poisoning in Brazilian swine. Vet. Hum. Toxicol., 33(6), 616 - 617.

Schoonover, J., Crim, J. (2015). An introduction to soil concepts and role of soils in watershed management. J. Contemp. Water Res. Educ., 154(1), 21 - 47.

Simbolon, H., Sutarno, H. (1986). Response of Amaranthus species to various light intensities. Buletin Penelitian Hortikultura, 13(3), 33 - 42. https://agris.fao.org/search/en/providers/122456/records/6471c71777fd37171a6f1a97

Simonson, R.W. (1959). Outline of a generalized theory of soil genesis. Soil Sci. Soc. Am. J., 23, 152 - 156. https://doi.org/10.2136/sssaj1959.03615995002300020007x

United Nations. (2020). World population prospects 2019. Department of Economic and Social Affairs. https://www.un.org/development/desa/pd/news/world-population-prospects-2019-0

Uphof, T.C.T. (1968). Dictionary of Economic Plants. Verlag von J. Cramer.

Wainaina, P., Minang, P.A., Nzyoka, J. (2022). Negative environmental externalities within cocoa, coffee and oil palm value chains in Africa. Tree Commodities and Resilient Green Economies in Africa, World Agroforestry (ICRAF).

Wainaina, P., Muthoni, J., Gicheru, P. (2022). Effects of soil erosion on agricultural productivity in peri - urban areas of Kenya. J. Environ. Sci. Health, Part B, 57, 1 - 13. https://doi.org/10.1080/03601234.2022.2027929

Wunderlin, R.P., Hansen, B.F., Franck, A.R., Essig, F.B. (2023). Atlas of Florida Plants. [Online] [Available at: https://florida.plantatlas.usf.edu/] [Accessed: 15/08/2023]

Zhang, M., Fang, L. (2007). Tea plantation–induced activation of soil heavy metals. Commun. Soil Sci. Plant Anal., 38(12), 67 - 78. https://doi.org/10.1080/00103620701378593

Zhao, C., Liu, B., Wang, Y. (2021). Effects of organic amendments on soil fertility and crop yield. J. Soil Sci. Plant Nutr., 21(2), 533 - 544.

Downloads

Published

2025-06-25

How to Cite

IKHAJIAGBE, B., OJANIKELE, A. W., MSHELMBULA, B. P., OMOREGIE, G. O., & ADEBIYI, M. C. (2025). Influence of soil depth on seedling growth and development of Amaranthus viridis L. after amendment with organic fertilizer . Studia Universitatis Babeș-Bolyai Biologia, 70(1), 213–230. https://doi.org/10.24193/subbbiol.2025.1.10

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.