Biochar soil amendments affect mycorrhizal colonization, root nodulation and dry matter accumulation in cowpeas (Vigna unguiculata (L.) Walp.)
DOI:
https://doi.org/10.24193/subbbiol.2025.1.08Keywords:
arbuscules, glomus species, mycorrhizal spore count, pine wood biochar, vesiclesAbstract
There is increasing demand for renewable inputs to improve soil productivity to satisfy the ever-growing human population. Biochar as a renewable resource has attracted attention over the years as soil amendment, notable for climate change mitigation and crop improvement. This study assessed the impact of pine wood biochar soil amendments on mycorrhizal root colonization, root nodulation, growth and yield of cowpeas in 2017 and 2018. The experimental design was a randomized complete block design with three replications. Biochar was applied with or without inorganic fertilizer (NPK15:15:15), cattle dung and nutrient source control two weeks before planting cowpea. Data on growth parameters, number of nodules, and plant dry matter accumulation were collected. Mycorrhizal colonization and spore counts associated with root nodules were determined under laboratory conditions. The results revealed that biochar amendments significantly affected nodulation, vine length, root length and weight. Percentage improvement was as follows: vine length by 8.8%, number of nodules by 14%, root length by 9.5%, root weight by 5.2% and dry matter accumulation by 92%. Application of NPK improved root length and weight over the control. Stereomicroscopic visualization of the roots indicated high presence of arbuscules in the biochar treatment over the control. Biochar addition is essential for improvement of rhizosphere traits essential for plant growth enhancement.
Article history: Received 24 September 2024; Revised 14 December 2024;
Accepted 15 January 2025; Available online 25 June 2025
References
Abayomi, Y., Ajibade, T., Sammuel, O. & Saadudeen, B. (2008). Growth and yield responses of cowpea (Vigna unguiculata (L.) Walp) genotypes to nitrogen fertilizer (NPK) application in the Southern Guinea Savanna zone of Nigeria. Asian J. Plant Sci. 7, 170-176. https://scialert.net/abstract/?doi=ajps.2008.170.176
Abdel-Fattah, G. M. & Asrar, A.-W. A. (2012). Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiol. Plant. 34, 267-277. https://link.springer.com/article/10.1007/s11738-011-0825-6
Agbodjato, N. A. & Babalola, O. O. (2024). Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops. Peer J. 12, e16836. https://doi.org/10.7717/peerj.16836.
Akanmu, A.O., Babalola, O.O., Venturi, V., Ayilara, M.S., Adeleke, B.S., Amoo, A.E., Sobowale, A.A., Fadiji, A.E. and Glick, B.R., 2021. Plant disease management: leveraging on the plant-microbe-soil interface in the biorational use of organic amendments. Front. Plant Sci. 12, p.700507. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2021.700507/full
Alburquerque, J. A., Cabello, M., Avelino, R., Barrón, V., del Campillo, M. C. & Torrent, J. (2015). Plant growth responses to biochar amendment of Mediterranean soils deficient in iron and phosphorus. J. Plant Nutr. Soil Sci. 178, 567-575. https://doi.org/10.1002/jpln.201400653
Aleklett, K. & Wallander, H. (2012). Effects of organic amendments with various nitrogen levels on arbuscular mycorrhizal fungal growth. A Appl. Soil Ecol. 60, 71-76. https://doi.org/10.1016/j.apsoil.2012.03.007
Atkinson, C. J., Fitzgerald, J. D. & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 337, 1-18. https://rdcu.be/eqIpw
Atugwu, A. I., Chukwudi, U. P., Eze, E. I., Ugwu, M. O. & Enyi, J. I. (2023). Growth and yield attributes of cowpea accessions grown under different soil amendments in a derived Savannah zone. AIMS Agric. Food 8(4), 932-943. https://doi.org/10.3934/agrfood.2023049
Ayangbenro, A. S., Odelade, K. A. & Babalola, O. O. (2023). Seasonal variation drives microbial diversity in cowpea rhizosphere in a semi-arid region. Int. J. Agric. Biol. 29, 201–208. https://doi.org/10.17957/IJAB/15.2020
Babalola, O. O., Sanni, A. I., Odhiambo, G. D. & Torto, B. (2007). Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea, and detectable amounts of ethylene are produced. World J. Microbiol. Biotechnol. 23(6), 747–752. https://doi.org/10.1007/s11274-006-9290-6
Chen, Y., Shinogi, Y. & Taira, M. (2010). Influence of biochar use on sugarcane growth, soil parameters, and groundwater quality. Soil Res. 48, 526-530. https://doi.org/10.1071/SR10011
Chibuike-Ezepue, G., Uzoh, I. & Unagwu, B. (2019). Biochar-induced modification of soil properties and the effect on crop production. Adv. Agric. Sci. 7, 59-87. https://aagri.org/file/journals/1/articles/153/submission/proof/153-1-769-3-10-20190614.pdf
Chinma, C., Alemede, I. & Emelife, I. (2008). Physicochemical and functional properties of some Nigerian cowpea varieties. Pak. J. Nutr. 7, 186-190. https://www.cabidigitallibrary.org/doi/full/10.5555/20083153188
Chukwudi, U. P. (2023). Ginger germplasm classification and identification of morphological markers related to rhizome yield. Crop Sci. 63, 248–254. https://doi.org/10.1002/csc2.20850
Ddamulira, G., Santos, C. A. F., Obuo, P., Alanyo, M. & Lwanga, C. K. (2015). Grain yield and protein content of Brazilian cowpea genotypes under diverse Ugandan environments. Am. J. Plant Sci. 6, 2074. https://www.scirp.org/journal/paperinformation?paperid=59175
Emmanuel, O. C., Akintola, O. A., Tetteh, F. M. & Babalola, O. O. (2021). Combined application of inoculant, phosphorus, and potassium enhances cowpea yield in Savanna soils. Agronomy 11, 15. https://doi.org/10.3390/agronomy11010015
Garcia, K. & Zimmermann, S. D. (2014). The role of mycorrhizal associations in plant potassium nutrition. Front. Plant Sci. 5, 337.
Gryndler, M., Hršelová, H., Cajthaml, T., Havránková, M., Řezáčová, V., Gryndlerová, H. & Larsen, J. (2009). Influence of soil organic matter decomposition on arbuscular mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonization. Mycorrhiza, 19, 255-266. https://doi.org/10.1007/s00572-008-0217-y
Gryndler, M., Hršelová, H., Vosatka, M., Votruba, J. & Klir, J. (2001). Organic fertilization changes the response of mycelium of arbuscular mycorrhizal fungi and their sporulation to mineral NPK supply. Folia Microbiol. 46, 540-542. https://doi.org/10.1007/BF02817999
Gunwal, I., Sharma, K. & Mago, P. (2014). Spore density and root colonization by arbuscular mycorrhizal fungi in heavy-metal-contaminated soils. IOSR J. Pharm. Biol. Sci. 49-53. https://www.iosrjournals.org/iosr-jpbs/papers/Vol9-issue3/Version-3/K09334953.pdf
Hammer, E. C., Nasr, H. & Wallander, H. (2011). Effects of different organic materials and mineral nutrients on arbuscular mycorrhizal fungal growth in a Mediterranean saline dryland. FEMS Microbiol. Ecol. 43, 2332-2337. https://doi.org/10.1016/j.soilbio.2011.07.004
Igiehon, N. O. & Babalola, O. O. (2017). Biofertilizers and sustainable agriculture: Exploring arbuscular mycorrhizal fungi. Appl. Microbiol. Biotechnol. 101, 4871-4881. https://doi.org/10.1007/s00253-017-8344-z
Jansa, J., Mozafar, A. & Frossard, E. (2005). Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276, 163-176. https://doi.org/10.1007/s11104-005-4274-0
Johnson, N. C. (2010). Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 185, 631-647. https://doi.org/10.1111/j.1469-8137.2009.03110.x
Lehmann, J. & Joseph, S. (2015). Biochar for environmental management: An introduction. In: Biochar for environmental management (pp. 33-46). Routledge. https://doi.org/10.4324/9780203762264
Liu, L., Wang, Y., Yan, X., Li, J., Jiao, N. & Hu, S. (2017). Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture. Agric. Ecosyst. Environ. 237, 16-23. https://doi.org/10.1016/j.agee.2016.12.026
Macdonald, L. M., Farrell, M., Van Zwieten, L. & Krull, E. S. (2014). Plant growth responses to biochar addition: An Australian soils perspective. Biol. Fertil. Soils 50, 1035-1045. https://doi.org/10.1007/s00374-014-0921-z
Mathimaran, N., Ruh, R., Vullioud, P., Frossard, E. & Jansa, J. (2005). Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil. Mycorrhiza 16, 61-66. https://doi.org/10.1007/s00572-005-0014-9
Muthukumar, T. & Udaiyan, K. (2002). Growth and yield of cowpea as influenced by changes in arbuscular mycorrhiza in response to organic manuring. J. Agron. Crop Sci. 188, 123-132. https://doi.org/10.1046/j.1439-037X.2002.00544.x
Nkaa, F. A., Nwokeocha, O. W. & Ihuoma, O. (2014). Effect of Phosphorus fertilizer on growth and yield of cowpea (Vigna unguiculata). J. Pharm. Biol. Sci. 9(5), 74–82. https://www.iosrjournals.org/iosr-jpbs/papers/Vol9-issue5/Version-4/N09547482.pdf
Ojo, A. O., Akinbode, O. A. & Adediran, J. A. (2011). Comparative study of different organic manures and NPK fertilizer for improvement of soil chemical properties and dry matter yield of maize in two different soils. J. Soil Sci. Environ. Manage. 2(1), 9-13. https://academicjournals.org/journal/JSSEM/article-full-text-pdf/0573C6210248
Omomowo, O. I. & Babalola, O. O. (2021). Constraints and prospects of improving cowpea productivity to ensure food, nutritional security, and environmental sustainability. Front. Plant Sci. 12, Article 751731. https://doi.org/10.3389/fpls.2021.751731.
Omomowo, W. & Babalola, O. O. (2023). Bioassessment of phylogenetic relatedness and plant growth enhancement of endophytic bacterial isolates from cowpea (Vigna unguiculata) plant tissues. Horticulturae 9(3), 332. https://doi.org/10.3390/horticulturae9030332.
Olmo, M., Lozano, A. M., Barrón, V. & Villar, R. (2016). Spatial heterogeneity of soil biochar content affects soil quality and wheat growth and yield. Sci. Total Environ. 562, 690-700. https://doi.org/10.1016/j.scitotenv.2016.04.089
Quilliam, R. S., DeLuca, T. H. & Jones, D. L. (2013). Biochar application reduces nodulation but increases nitrogenase activity in clover. Plant Soil 366, 83-92. https://doi.org/10.1007/s11104-012-1411-4
Santos, R., Carvalho, M., Rosa, E., Carnide, V. & Castro, I. (2020). Root and agro-morphological traits performance in cowpea under drought stress. Agronomy 10(10), 1604. https://www.mdpi.com/2073-4395/10/10/1604
Shen, Q., Hedley, M., Camps Arbestain, M. & Kirschbaum, M. (2016). Can biochar increase the bioavailability of phosphorus? J. Soil Sci. Plant Nutr. 16, 268-286. http://dx.doi.org/10.4067/S0718-95162016005000022
Soil Classification Working Group. (1991). Soil classification: A taxonomic system for South Africa (2nd ed.). Department of Agricultural Development, Pretoria, South Africa. https://search.worldcat.org/title/1050392627.
Solaiman, Z. M., Blackwell, P., Abbott, L. K. & Storer, P. (2010). Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Res. 48, 546-554. https://www.publish.csiro.au/sr/sr10002
Suthar, S. (2012). Impact of vermicompost and composted farmyard manure on growth and yield of garlic (Allium sativum L.) field crop. Int. J. Plant Prod. 3, 27-38. http://www.gau.ac.ir/Jm/Programs/JurnalMgr/VolumArticle/EN_127_8.pdf
Vanek, S. J. & Lehmann, J. (2015). Phosphorus availability to beans via interactions between mycorrhizas and biochar. Plant Soil 395, 105-123. https://doi.org/10.1007/s11104-014-2246-y
Wanjiku, G. J., Kingori, G. G. & K. J. Kirimi (2023). Effect of harvesting stage on cowpea leaf nutrient composition. Plant 11(2), 50-59. https://doi.org.10.11648/j.plant.20231102.12
Xiang, Y., Deng, Q., Duan, H. & Guo, Y. (2017). Effects of biochar application on root traits: A meta‐analysis. GCB Bioenergy 9, 1563-1572. https://doi.org/10.1111/gcbb.12449
Xin, Y., Fan, Y., Babalola, O. O., Zhang, X. & Yang, W. (2022). Legacy effects of biochar and compost addition on arbuscular mycorrhizal fungal community and co-occurrence network in black soil. Microorganisms 10, 2137. https://doi.org/10.3390/microorganisms10112137
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Biologia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.