Antibacterial activity on methicillin-resistant Staphylococcus aureus (MRSA) and antioxidant properties of silver nanoparticles synthesized by Hunteria umbellata (K. Schum.) seeds

Authors

  • Fidelis Ifeakachukwu OKOLAFOR Department of Science Laboratory Technology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria. Corresponding author: fidelis.okolafor@uniben.edu https://orcid.org/0000-0002-5025-1698
  • Martyna Chinedu UBA Department of Science Laboratory Technology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
  • Onoche Vera OKOLAFOR Edo State College of Agriculture and Natural Resources, Iguoriaki, Edo State, Nigeria
  • Salem Kivos ADEBIYI University of Central Lancashire, United Kingdom https://orcid.org/0000-0002-3276-3761

DOI:

https://doi.org/10.24193/subbbiol.2024.2.09

Keywords:

characterization, Hunteria umbellata, plant extracts, silver nanoparticles, synthesis

Abstract

Silver nanoparticles (AgNPs) have gained significant attention over the years due to their unique physicochemical properties and diverse applications in various areas including medicine, electronics, and so on. Hunteria umbellata (HU), is a glabrous tree native to West Africa that belongs to the Apocynaceae family with various medicinal properties. The medicinal applications; anti-microbial and anti-oxidant properties of synthesized and characterized silver nanoparticles by using HU seeds, were studied. Aqueous and ethanol extracts of HU were obtained for the synthesis process. UV-Vis spectra analysis was used to reveal the distinct absorption patterns for AgNPs synthesized by ethanol and aqueous extracts. FTIR spectra exhibited characteristic transmittance peaks, indicating the presence of functional groups such as hydroxyl groups. XRD analysis confirmed the crystalline nature of AgNPs with identifiable peaks at specific planes while SEM/EDX was used to provide insights into the size distribution and morphology of AgNPs, reinforcing the data from other characterization methods. Medicinal properties were assessed through antibacterial assays using Methicillin-Resistant Staphylococcus aureus (MRSA) and DPPH radical scavenging activity, showcasing the potential biomedical applications of AgNPs-HU complex. Comparative studies with standard compounds like ascorbic acid validated their efficacy as antioxidants. The findings of this study suggest promising antibacterial and antioxidant properties of AgNPs-HU complex synthesized by HU seeds extracts and also contribute to the understanding of nanomedicine and underscore the potential of green synthesis for biomedical applications.

Article history: Received 30 June 2024; Revised 13 October 2024;
Accepted 26 October 2024; Available online 10 December 2024

References

Abubakar, A. N., Saidu, A. N., Akanya, O. H., & Egwim, E. C. (2019). Antioxidants and hypoglycemic effect of some medicinal plants. GSC Biol. Pharm. Sci.d. Doi:10.30574/gscbps.2019.8.2.0124

Adeneye, A. A., Sofidiya, M., & Adenekan, S. (2011). Anti-inflammatory and antioxidant activities of Hunteria umbellata seed fractions. Pharmacologia, 2(6), 165-171. Doi: 10.5567/pharmacologia.2011.165.171

Aderele, O. R., Rasaq, A. K., & Momoh, J. O. (2020). Phytochemical screening, mathematical analysis and antimicrobial activity of methanolic seed extract of Hunteria umbellata. European J. Med. Plants, 31(16), 1-17. Doi:10.9734/ejmp/2020/v31i1630325

Ahajumobi, E., & Anderson, P. B. (2022). Hunteria Umbellata Folk Medicine’s Potency for Treating Obesity and Metabolic Syndrome Diseases. Asian J. Med. Health, 20(10), 21-30. Doi:10.9734/ajmah/2022/v20i1030502

Andrade, S., Ramalho, M. J., Santos, S. B., Melo, L. D., Santos, R. S., Guimarães, N., & Pereira, M. C. (2023). Fighting methicillin-resistant Staphylococcus aureus with targeted nanoparticles. Int. J. Mol. Sci., 24(10), 9030. https://doi.org/10.3390/ijms24109030

Asif, M., Yasmin, R., Asif, R., Ambreen, A., Mustafa, M., & Umbreen, S. (2022). Green synthesis of silver nanoparticles (AgNPs), structural characterization, and their antibacterial potential. Dose-Response, 20(2), 15593258221088709. Doi:10.1177/15593258221088709

Bal, A. M., David, M. Z., Garau, J., Gottlieb, T., Mazzei, T., Scaglione, F., ... & Gould, I. M. (2017). Future trends in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infection: An in-depth review of newer antibiotics active against an enduring pathogen. J. Glob. Antimicrob. Resist., 10, 295-303. https://doi.org/10.1016/j.jgar.2017.05.019

Bamal, D., Singh, A., Chaudhary, G., Kumar, M., Singh, M., Rani, N., Mundlia, P., & Sehrawat, A. R. (2021). Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: An updated review. J. Nanomater., 11(8), 2086. Doi: 10.3390/nano11082086

Bouafia, A., Laouini, S. E., Ahmed, A. S., Soldatov, A. V., Algarni, H., Feng Chong, K., & Ali, G. A. (2021). The recent progress on silver nanoparticles: synthesis and electronic applications. J. Nanomater., 11(9), 2318. Doi:10.3390/nano11092318

Catalano, P. N., Chaudhary, R. G., Desimone, M. F., & Santo-Orihuela, P. L. (2021). A survey on analytical methods for the characterization of green synthesized nanomaterials. Curr. Pharm. Biotechnol., 22(6), 823-847. Doi:10.2174/1389201022666210104122349

Chen, C. J., & Huang, Y. C. (2014). New epidemiology of Staphylococcus aureus infection in Asia. Clin Microbiol. Infect., 20(7), 605-623. https://doi.org/10.1111/1469-0691.12705

Edosuyi, O., Igbe, I., & Iniaghe, L. O. (2018). Antinociceptive and antioxidant activities of Hunteria umbellata stem bark: possible role of the serotonergic, opioidergic and dopaminergic pathways. J. Complement. Integr. Med., 15(1), 20170099. Doi:10.1515/jcim-2017-0099

Falagas, M. E., Karageorgopoulos, D. E., Leptidis, J., & Korbila, I. P. (2013). MRSA in Africa: filling the global map of antimicrobial resistance. PloS one, 8(7), e68024. https://doi.org/10.1371/journal.pone.0068024

Galatage, S. T., Hebalkar, A. S., Dhobale, S. V., Mali, O. R., Kumbhar, P. S., Nikade, S. V., & Killedar, S. G. (2021). Silver nanoparticles: properties, synthesis, characterization, applications and future trends. Silv. Micro-Nanoparticles—Propert., Synth., Character., and Appl. Doi:10.5772/intechopen.99173

Hornyak, G. L., Moore, J. J., Tibbals, H. F., & Dutta, J. (2018). Fundamentals of nanotechnol. CRC press. Doi:10.1201/9781315222561

Kanwar, R., Fatima, R., Kanwar, R., Javid, M. T., Muhammad, U. W., Ashraf, Z., & Khalid, A. (2021). Biological, physical and chemical synthesis of silver nanoparticles and their non-toxic bio-chemical application: A brief review. Pure and Appl. Biol. (PAB), 11(2), 421-438. Doi:10.19045/bspab.2022.110042

Köck, R., Becker, K., Cookson, B., van Gemert-Pijnen, J. E., Harbarth, S., Kluytmans, J. A. J. W., ... & Friedrich, A. W. (2010). Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro Surveill, 15(41). https://doi.org/10.2807/ese.15.41.19688-en

Liu, X. (2021). IR spectrum and characteristic absorption bands. Organic Chemistry I; Kwantlen Polytechnic University: Surrey, BC, Canada.

López-Malo, A., Mani-López, E., Davidson, P. M., & Palou, E. (2020). Methods for activity assay and evaluation of results. In Antimicrobials in food (pp. 13-40). CRC Press. Doi:10.1201/9780429058196-2

Mateo, E. M., & Jiménez, M. (2022). Silver nanoparticle-based therapy: can it be useful to combat multi-drug resistant bacteria? Antibiotics, 11(9), 1205. Doi:10.3390/antibiotics11091205

Mendes, R. E., Mendoza, M., Banga Singh, K. K., Castanheira, M., Bell, J. M., Turnidge, J. D., ... & Jones, R. N. (2013). Regional resistance surveillance program results for 12 Asia-Pacific nations (2011). Antimicrob. Agents Chemother., 57(11), 5721-5726. https://doi.org/10.1128/aac.01121-13

Mihailović, V., Srećković, N., Nedić, Z. P., Dimitrijević, S., Matić, M., Obradović, A., Selaković, D., Rosić, G., & Katanić Stanković, J. S. (2023). Green synthesis of silver nanoparticles using Salvia verticillata and Filipendula ulmaria extracts: Optimization of synthesis, biological activities, and catalytic properties. Molecules, 28(2), 808. Doi:10.3390/molecules28020808

More, P. R., Pandit, S., Filippis, A. D., Franci, G., Mijakovic, I., & Galdiero, M. (2023). Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms, 11(2), 369. Doi:10.3390/microorganisms11020369

Nguyen, N. P. U., Dang, N. T., Doan, L., & Nguyen, T. T. H. (2023). Synthesis of silver nanoparticles: from conventional to ‘modern’methods—a review. Processes, 11(9), 2617. Doi:10.3390/pr11092617

Nguyen, H. H., Park, J., Kang, S., & Kim, M. (2015). Surface plasmon resonance: a versatile technique for biosensor applications. Sensors, 15(5), 10481-10510. Doi:10.3390/s150510481

Oboh, G., Adebayo, A. A., & Ademosun, A. O. (2018). Erection-stimulating, anti-diabetic and antioxidant properties of Hunteria umbellata and Cylicodiscus gabunensis water extractable phytochemicals. J. Compl. Integrat. Med., 15(1). Doi:10.1515/jcim-2016-0164

Ogunlana, O. O., Adetuyi, B. O., Rotimi, M., Esalomi, l., Adeyemi, A., Akinyele, J., Ogunlana, O. E., Adetuyi, O. A., Adebisi, O. A., & Opata, E. K. (2021). Hypoglycemic and antioxidative activities of ethanol seed extract of Hunteria umbellata (Hallier F.) on streptozotocin-induced diabetic rats. Clin. Phytosci., 7(1), 55. Doi:10.1186/s40816-021-00285-1

Okolafor, F. I., & Ekhaıse, F. O. (2021). Effect of a tropical plant (Hunteria umbellata) in the management of Streptozotocin induced Diabetes Mellitus and other physiological and biochemical functions in Wistar. CUPMAP, 4(1), 1-12. Doi:10.38093/cupmap.842583

Patel, R. R., Singh, S. K., & Singh, M. (2023). Green synthesis of silver nanoparticles: methods, biological applications, delivery and toxicity. J. Adv. Mater., 4(8), 1831-1849. Doi:10.1039/d2ma01105k

Prasher, P., Singh, M., & Mudila, H. (2018). Silver nanoparticles as antimicrobial therapeutics: current perspectives and future challenges. 3 Biotech, 8, 1-23. Doi:10.1007/s13205-018-1436-3

Purrello, S. M., Garau, J., Giamarellos, E., Mazzei, T., Pea, F., Soriano, A., & Stefani, S. (2016). Methicillin-resistant Staphylococcus aureus infections: A review of the currently available treatment options. J. Glob. Antimicrob. Resist., 7, 178-186. Doi.org/10.1016/j.jgar.2016.07.010

Selvan, G. A., Rachel, S., & Gajendran, T. (2021). Several assorted characterization methods of nanoparticles. In Nanomaterials (pp. 301-308). Elsevier. Doi:10.1016/b978-0-12-822401-4.00040-4

Sharma, K., Guleria, S., & Razdan, V. (2020). Green synthesis of silver nanoparticles using Ocimum gratissimum leaf extract: characterization, antimicrobial activity and toxicity analysis. J. plant BiocheM. Biotechnol., 29, 213-224. Doi:10.1007/s13562-019-00522-2

Sharma, U. S., & Kumar, A. (2011). In vitro antioxidant activity of Rubus ellipticus fruits. J. Adv. Pharm. Technol Res., 2(1), 47-50. Doi:10.4103/2231-4040.79805

Styers, D., Sheehan, D. J., Hogan, P. & Sahm, D. F. (2006). Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus: 2005 status in the United States. Ann. Clin. Microbiol. Antimicrob., 5, 1-9. https://doi.org/10.1186/1476-0711-5-2

Tacconelli, E., Sifakis, F., Harbarth, S., Schrijver, R., van Mourik, M., Voss, A. & Wolkewitz, M. (2018). Surveillance for control of antimicrobial resistance. Lancet Infect. Dis., 18(3), e99-e106. https://doi.org/10.1016/s1473-3099(17)30485-1

Ullah, S., Gulnaz, A., Anwar, S., Kamal, A., & Wali, H. (2024). Synthetization and Characterization of Zinc Oxide Nanoparticles by X-Ray Diffractometry (XRD), Fourier Transforms, Infra-Red Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and Antibacterial Activity Test. Am. J. Phys., 2(1), 1-25. Doi:10.47604/ajps.2294

Van de Vel, E., Sampers, I., & Raes, K. (2019). A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci. Nutr., 59(3), 357-378. Doi:10.1080/10408398.2017.1371112

Vivek, R., Thangam, R., Muthuchelian, K., Gunasekaran, P., Kaveri, K., & Kannan, S. (2012). Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem., 47(12), 2405-2410. Doi:10.1016/j.procbio.2012.09.025

Downloads

Published

2024-12-10

How to Cite

OKOLAFOR, F. I., UBA, M. C., OKOLAFOR, O. V., & ADEBIYI, S. K. (2024). Antibacterial activity on methicillin-resistant Staphylococcus aureus (MRSA) and antioxidant properties of silver nanoparticles synthesized by Hunteria umbellata (K. Schum.) seeds. Studia Universitatis Babeș-Bolyai Biologia, 69(2), 139–158. https://doi.org/10.24193/subbbiol.2024.2.09

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.