RP-HPLC AND HPTLC-BASED PHYTOCHEMICAL STUDIES OF ENDEMIC NEPETA CADMEA BOISS. AND ITS EFFECTS ON CARBOHYDRATE DIGESTIVE ENZYMES
DOI:
https://doi.org/10.24193/subbchem.2025.4.15Keywords:
α-amylase, α-glucosidase, RP-HPLC, HPTLC, Nepeta cadmeaAbstract
This study investigated the in vitro inhibitory potential of the methanol extract of the aerial parts of Nepeta cadmea on α-glucosidase and α-amylase, which are known as key enzymes related to type 2 diabetes mellitus. To determine the active constituents of the endemic Lamiaceae plant, validated RP-HPLC and HPTLC techniques were used. The methanol extract demonstrated moderate and dose-dependent inhibitory activity, with inhibition rates of 43.57 ± 4.32% against α-glucosidase at 2 mg/mL and 36.74 ± 7.23% against α-amylase at 1 mg/mL. Phytochemical analysis revealed that rosmarinic acid (0.6290 ± 0.0095 g/100g dw) was the predominant phenolic compound, followed by chlorogenic acid (0.0429 ± 0.0012 g/100g dw) and caffeic acid (0.0027 ± 0.0002 g/100g dw). These findings suggest that this endemic Lamiaceae plant may have potential as a natural therapeutic agent for managing diabetes mellitus. Further studies are warranted to explore its mechanisms of action and to evaluate its efficacy in clinical settings.
References
1. T. Dirmenci; Nepeta. In Türkiye Bitkileri Listesi (Damarlı Bitkiler); Güner, A., Aslan, S., Ekim, T., Vural, M., Babaç, M. T., Eds.; Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını: İstanbul, Türkiye, 2012; pp. 564-568. ISBN 978-605-60425-7-7.
2. G. Yılmaz; G. Öztürk; M. Çiçek; B. Demirci; Int. J. Second. Metab., 2020, 7(1), 28-34.
3. T. Baytop; Türkiye’de Bitkiler ile Tedavi, Geçmişte ve Bugün, 2nd ed.; Nobel Tıp Kitabevleri: İstanbul, Türkiye, 1999; pp. 480. ISBN 975-420-0211.
4. C. Formisano; D. Rigano; F. Senatore; Chem. Biodivers., 2011, 8(10), 1783-1818.
5. C. Sarikurkcu; M. Eskici; A. Karanfil; B. Tepe; S. Afr. J. Bot., 2019, 120, 298-301.
6. T. Dirmenci; BAÜ Fen Bil. Enst. Derg., 2003, 5(2), 38-46.
7. A. Kaska; N. Deniz; M. Çiçek; R. Mammadov; J. Food Sci., 2018, 83(6), 1552-1559.
8. K. H. C. Baser; B. Demircakmak; A. Altintas; H. Duman; J. Essent. Oil Res., 1998, 10(3), 327-328.
9. Y. Takeda; Y. Ooiso; T. Masuda; G. Honda; H. Otsuka; E. Sezik; E. Yesilada; Phytochemistry, 1998, 49(3), 787-791.
10. T. P. Lam; N. V. N. Tran; L. H. D. Pham; N. V. T. Lai; B. T. N. Dang; N. L. N. Truong; T. D. Tran; Nat. Prod. Bioprospect., 2024, 14(1), 4.
11. A. M. M. Naguib; M. E. Ebrahim; H. F. Aly; H. M. Metawaa; A. H. Mahmoud; E. A. Mahmoud; F. M. Ebrahim; Nat. Prod. Res., 2012, 26(23), 2196-2198.
12. S. Devi; R. Singh; Int. J. Pharm. Pharm. Sci., 2016, 8(7), 330-335.
13. A. Sharma; R. Cooper; G. Bhardwaj; D. S. Cannoo; J. Ethnopharmacol., 2021, 268, 113679.
14. C. Sarikurkcu; O. Ceylan; S. Targan; S. Ć. Zeljković; Ind. Crops Prod., 2018, 125, 5–8.
15. A. Gökbulut; G. Yilmaz; J. Res. Pharm., 2020, 24(6), 901-907.
16. Y. L. Ngo; L. S. Chua; Curr. Enz. Inhib., 2018, 14(2), 97-103.
17. P. P. McCue; K. Shetty; Asia Pac. J. Clin. Nutr., 2004, 13(1).
18. G. Oboh; O. M. Agunloye; S. A. Adefegha; A. J. Akinyemi; A. O. Ademiluyi; J. Basic Clin. Physiol. Pharmacol., 2015, 26(2), 165-170.
19. N. Cardullo; G. Floresta; A. Rescifina; V. Muccilli; C. Tringali; Bioorg. Chem., 2021, 117, 105458.
20. K. S. Tshiyoyo; M. J. Bester; J. C. Serem; Z. Apostolides; J. Mol. Struct., 2022, 1266, 133492.
21. H. Ali; P. J. Houghton; A. Soumyanath; J. Ethnopharmacol., 2006, 107(3), 449-455.
22. S. H. Lam; J. M. Chen; C. J. Kang; C. H. Chen; S. S. Lee; Phytochemistry, 2008, 69(5), 1173-1178.
23. A. Gökbulut; Turk. J. Pharm. Sci., 2016, 13(2), 159-166.
24. A. Gökbulut; Curr. Anal. Chem., 2021, 17(9), 1252-1259.
25. A. Gökbulut; Trop. J. Pharm. Res., 2015, 14(10), 1871–1877.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
