A NEW HPLC METHOD APPROACH FOR THE QUANTIFICATION OF QUERCETIN IN SEVEN DIFFERENT ANATOLIAN PLANT EXTRACTS

Authors

  • Aysun DİNÇEL Department of Analytical Chemistry, Faculty of Pharmacy, Lokman Hekim University, Ankara, Türkiye, *aysun.dincel@lokmanhekim.edu.tr.
  • Murat KÜRŞAT Department of Biology, Faculty of Science and Arts, Bitlis Eren University, Bitlis, Türkiye. https://orcid.org/0000-0002-0861-4213
  • İbrahim Seyda URAS Department of Pharmacognosy, Faculty of Pharmacy, Ağrı Ibrahim Cecen University, Ağrı, Türkiye. https://orcid.org/0000-0001-5945-8743
  • Belma KONUKLUGİL Department of Pharmacognosy, Faculty of Pharmacy, Lokman Hekim University, Ankara, Türkiye.

DOI:

https://doi.org/10.24193/subbchem.2025.4.13

Keywords:

Zosima absinthifolia, Anarrhinum orientale, Fumaria asepala, Ferulago stellata, Salvia pseudeuphratica, Rhabdosciadium microcalycinum, Diplotaenia cachrydifolia, Quercetin, HPLC, Validation

Abstract

The use of natural antioxidants, especially phenolic compounds derived from foods and plants, has been extensively investigated in the context of preventive and therapeutic medicine. Quercetin, a flavonoid of the flavonol class, exhibits multiple health-promoting properties, including antioxidant, antimicrobial, and antifungal activities. The present study aimed to quantify quercetin in seven plant species native to Türkiye: Zosima absinthifolia, Anarrhinum orientale, Fumaria asepala, Ferulago stellata, Salvia pseudeuphratica, Rhabdosciadium microcalycinum, and Diplotaenia cachrydifolia. A novel reversed-phase HPLC-DAD method was developed for the determination of quercetin in these plant extracts and subsequently validated in accordance with ICH guidelines. The method demonstrated linearity over the concentration range of 0.4–1.2 µg/mL (r² > 0.999), with mean recovery values ranging from 96.5% to 98.3%. All validation parameters were evaluated and confirmed in accordance with ICH guidelines, demonstrating the method's reliability for quantifying quercetin in plant matrices.

References

1. B. Sultana; F. Anwar; Food Chemistry, 2008, 10, 879-884

2. I. Del Valle; T. M. Webster; H. Y. Cheng; J. E. Thies; A. Kessler; M. K. Miller; Z. T. Ball; K. R. MacKenzie; C. A. Masiello; J. J. Silberg; J. Lehmann; Science advances, 2020, 6(5), eaax8254.

3. A. N. Panche; A. D. Diwan; S. R. Chandra; Journal of nutritional science, 2016, 5, e47.

4. A. N. Panche; A. D. Diwan; S. R. Chandra; J. Nutr. Sci., 2016, 5, e47.

5. S. Tang; B. Wang; X. Liu; W. Xi; Y. Yue; X. Tan; J. Bai; L. Huang; Food Frontiers, 2025, 6, 218-247.

6. A. Roy; A. Khan; I. Ahmad; S. Alghamdi; B. S. Rajab; A. O. Babalghith; M. Y. Alshahrani; S. Islam; M. R. Islam; Biomed. Res. Int., 2022, 5445291.

7. B. A. Owona; W. A. Abia; P. F. Moundipa; Int. Immunopharmacol., 2020, 84, 106498.

8. K. J. Meyers; J. L. Rudolf; A. E. Mitchell; J. Agric. Food Chem., 2008, 56, 830-836.

9. J. Lu; D. M. Wu; Y. L. Zheng; J. Pathol., 2010, 222, 199-212.

10. R. Balestrini; C. Brunetti; M, Cammareri; S. Caretto; V. Cavallaro; E. Cominelli; M. De Palma; T. Docimo; G. Giovinazzo; S. Grandillo; F. Locatelli; Int. J. Mol. Sci., 2021, 22, 2887

11. D, Hoxha; B. Bauer; G. Stefkov; G. Hoxha; Macedonian Pharmaceutical Bulletin, 2022, 68(2), 3-5

12. L. Nohutçu; M. Tunçtürk, R; Tunçtürk; Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2019, 24(2), 142-151

13. S. Karakaya; M. Koca; S. Yılmaz; K. Yıldırım; N. Pınar; B. Demirci; M. Brestic; O. Sytar; Molecules, 2019, 24(4), 722

14. M.K. Erdogan; R. Gundogdu; Y. Yapar; I.H. Gecibesler; M. Kirici; L. Behcet; B. Tuzun; P. Taslimi; ChemistrySelect, 2022, 7(17), e202200400

15. M. Kakar; M.U. Amin; S. Alghamdi; M.U.K. Sahibzada; N. Ahmad; N. Ullah; Evidence-Based Complementary and Alternative Medicine, 2020, 3903682

16. S. Khamtache-Abderrahim; M. Lequart-Pillon; E. Gontier; I. Gaillard; S. Pilard; D. Mathiron; H. Djoudad-Kadji; F. Maiza-Benabdesselam; Industrial Crops and Products, 2016, 94, 1001-1008

17. ICH, 2014. Harmonized Tripartite Guideline, Validation of analytical procedures: Text and Methodology Q2(R1), ICH Steering Commitee, https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf. (accessed 30 January 2025)

18. ICH, 2022. Harmonized Tripartite Guideline, on validation of analytical procedures Q2(R2), ICH Steering Commitee, https://database.ich.org/sites/default/files/

ICH_Q2-R2_Document_Step2_Guideline_2022_0324.pdf. (accessed 30 January 2025)

19. The United States Pharmacopoeia (USP), 2000, 24th revision, Easton, Rand Mc Nally Taunton.

20. K. Hui Miean; S. Mohamed; J. Agric. Food Chem. 2001, 49, 3106-3112

21. C. Gang; Z. Hongwei; Y. Jiannong; Analytica Chimica Acta, 2000, 423, 69-76.

22. Y. Wang; J. Cao; J.H. Weng; S. Zeng; Journal of pharmaceutical and biomedical analysis, 2005, 39(1-2), 328–333.

Downloads

Published

2025-12-16

How to Cite

DİNÇEL, A., KÜRŞAT, M., URAS, İbrahim S., & KONUKLUGİL, B. (2025). A NEW HPLC METHOD APPROACH FOR THE QUANTIFICATION OF QUERCETIN IN SEVEN DIFFERENT ANATOLIAN PLANT EXTRACTS. Studia Universitatis Babeș-Bolyai Chemia, 70(4), 233–242. https://doi.org/10.24193/subbchem.2025.4.13

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.