HPLC/DAD ANALYSIS OF VITAMIN C AND ANTIOXIDANT CAPACITY DETERMINATION OF VITIS VINIFERA L. GRAPES DURING RIPENING

Authors

  • Nicoleta MATEI Ovidius University of Constanta, Faculty of Applied Sciences and Engineering, Department of Chemistry and Chemical Engineering, 124 Mamaia Blvd., RO-900527, Constanta, Romania, nmatei@univ-ovidius.ro https://orcid.org/0000-0001-5566-8364
  • Semaghiul BIRGHILA Ovidius University of Constanta, Faculty of Applied Sciences and Engineering, Department of Chemistry and Chemical Engineering, 124 Mamaia Blvd., RO-900527, Constanta, *sbirghila@univ-ovidius.ro https://orcid.org/0000-0002-8829-9101
  • Simona DOBRINAS Ovidius University of Constanta, Faculty of Applied Sciences and Engineering, Department of Chemistry and Chemical Engineering, 124 Mamaia Blvd., RO-900527, Constanta, sdorbinas@univ-ovidius.ro. https://orcid.org/0000-0002-9971-6134
  • Elena Carmen LUPU Ovidius University of Constanta, Faculty of Pharmacy, 6 Căpitan Aviator Al. Șerbănescu Street, Constanta, Romania 900470, clupu@univ-ovidius.ro. https://orcid.org/0000-0002-0200-0157
  • Antoanela POPESCU Ovidius University of Constanta, Faculty of Pharmacy, 6 Căpitan Aviator Al. Șerbănescu Street, Constanta, Romania 900470, antoanela.popescu@univ-ovidius.ro. https://orcid.org/0000-0002-8462-9564

DOI:

https://doi.org/10.24193/subbchem.2025.4.12

Keywords:

Ascorbic acid, grapes, peel, pulp, seed, HPLC-DAD, antioxidant capacity

Abstract

This study aims to determine the vitamin C (ascorbic acid, AA) content and antioxidant capacity in five varieties of grapes (skin, pulp and seeds). A simple, fast and sensitive High–Performance Liquid Chromatography/Diode Array Detection (HPLC-DAD) method was used for the determination of ascorbic acid in grapes (Vitis vinifera L.) samples from Murfatlar vineyard. Total antioxidant capacity was determined through photochemiluminiscence method as ACL (Antioxidant capacity of lipid soluble substances). The LOD was 0.40 µg/mL for the HPLC-DAD method. The advantages of the method are using of small amounts of samples and reagents, short analysis time and minimum steps for sample preparation. Antioxidant capacity of Vitis vinifera L. grapes alcoholic extract ranged between 0.02 and 7.42 mmoles equivalent TROLOX/100g product. After statistical analysis (ANOVA), a significant correlation between the ascorbic acid concentration and the antioxidant capacity was observed in peel, pulp, and seeds during ripening. Due to the high content of ascorbic acid and antioxidant capacity, future analysis should focus on the determination of other bioactive substances in grapes.

References

1. L. P. Leong; G. Shui, Food Chem., 2002, 76, 69–75.

2. D. Feskanich; R. G. Ziegler; D. S. Michaud; E. L. Giovannucci; F. E. Speizer; W. C. Willett; G. A. Colditz, J Natl Cancer Inst., 2000, 92, 1812–1823.

3. A. D. Haegele; C. Gillette; C. O’Neill; P. Wolfe; J. Heimendinger; S. Sedlacek; H. J. Thompson, Cancer Epidemiol. Biomark. Prev., 2000, 9, 421–425.

4. K. B. Michels; E. Giovannucci; J. K. Joshipura; B. A. Rosner; M. J. Stampfer; C. S. Fuchs; G. A. Colditz; F. E. Speizer; W. C. Willett, J Natl Cancer Inst., 2000, 92, 1740–1752.

5. A. Sabra; T. Netticadan; C. Wijekoon, Food Chem X, 2021, 12, 100149.

6. H. Wang, Polymers, 2025, 17 (6), 750.

7. A. Ahmad; H. Ahsan, J. Immunoass. Immunochem., 2020, 41, 257–271.

8. H. Wang, Expert Rev. Mol. Med., 2023, 25, e24.

9. J. E. Klaunig, Curr. Pharm. Des., 2018, 24, 4771–4778.

10. V. Sosa; T. Moliné; R. Somoza; R. Paciucci; H. Kondoh; M.E. LLeonart, Ageing Res. Rev., 2013, 12, 376–390.

11. L. A. Terry, Health-promoting Properties of Fruit and Vegetables, Editura CAB International North, America, 2011, pp.154.

12. C. Tardea, Chimia si analiza vinului. Editura Ion Ionescu de la Brad. Bucureşti, Romania, 2007, pp. 514.

13. C. Dani; L. S. Oliboni; R. Vanderlinde; D. Bonatto; M. Salvador; J. A. P. Henriques, Food Chem. Toxicol., 2007, 45, 2574-2580.

14. China Food Composition 2002, compiled by Institute of Nutrition and Food Safety, China CDC. Beijing: Peking University Medical Press, 2002, pp. 82

15. B. Farida; R. Djamai; Y. Cadot, J. Int. Sci. Vigne Vin., 2014, 48, 153-162.

16. S. Tavarini; E. Degl’Innocenty; D. Remorini; R. Massai; L. Guidi; Food Chem., 2008, 107, 282-288.

17. N. Matei; S. Dobrinas; G. L. Radu; Ovidius Univ. Ann. Chem., 2012, 23, (2), 174-179.

18. N. Matei; S. Birghila; S. Dobrinas; P. Capota; Acta Chim. Slov., 2004, 51, 169-175.

19. N. Matei; V. Magearu; S. Birghila; S. Dobrinas; Rev. Chi., 2004, 55 (5), 294-296.

20. V. K. Gupta; R. Jain; K. Radhapyari; N. Jadon; S. Agarwal; Anal. Biochem., 2011, 408, 179–196.

21. V. Raghu; P. Kalpana; K. Srinivasan; J. Food Compos. Anal., 2007, 20, 529–533.

22. M. C. Yebra-Biurrum; R. M. Cespon-Romero; P. Bermejo-Barrera; Mikrochim. Acta, 1997, 126, 53-58.

23. R. Zuo; S. Zhou; Y. Zuo; Y. Deng, Food Chem., 2015, 182, 242-245.

24. X. Han; J. Zhou; Y. Li; Y. Zhao; Y. Li; Y. Hua; T. Dong; F. Chai; Food Chem., 2025, 479, 143727.

25. J. Li; J. Zhang; X. Yang; A. Kong; N. Wang; J. Tang; X. Yu; Food Chem., 2025, 466, 2025, 142158.

26. M. Liang; Z. Han; M. Li; Y. Shen; Z. Liu; X. Geng; X. Li; Y. Cao; H. Shi; X. Li; S. He; P. Liu; J. Food Compos. Anal., 2025, 141, 2025, 107334.

27. R. Engel; L. Abrankó; E. Stefanovits-Bányai; P. Fodor; Acta Aliment., 2010, 39 (1), 48–58.

28. L. Novakova; P. Solich; D. Solichova; Trends Anal. Chem., 2008, 27, 10, 942-958.

29. I. Mato; S. Suarez-Luque; J.F. Huidobro; Food Res. Int. l, 2005, 38, 1175–1188.

30. R. M. Uckoo; G.K. Jayaprakasha; S.D. Nelson; B.S. Patil; Talanta, 2011, 83, 948–954

31. R. N. AlKaraki; S. K. Tarawneh; R. R. Haddadin; R. Aqil; R. M. Alkasasbeh; Results Chem., 2024, 10, 101701.

32. A. Wojdyło; Á. A. Carbonell-Barrachina; P. Legua; F. Hernández; Food Chem., 2016, 201, 307-314.

33. B. Kiss; D. S. Popa; G. Crisan; M. Bojita; F. Loghin F; Farmacia, 2009, 57 (4), 432-441.

34. R. Ferreira Oliveira; C. Amorim Camara; M. F. Agrab; T. M. Sarmento Silva; Nat. Prod. Commun., 2012, 12, 1597-1600.

35. A. Kowalczyk; I. Biskup; I. Fecka, Nat. Prod. Commun., 2012, 12, 1631-1634.

36. W. M. Nuzul; H. Wan Salleh; F. Ahmad, K. Heng Yen; H. Mohd Sirat; Nat. Prod. Commun., 2012, 12, 1659-1662.

37. G. Szabo; E. Csiki; Á.-F. Szoke; N. Muntean, Studia UBB Chemia, LXVII, 2022, 3, 7-16.

38. A. A. Adehuwa-Olabode; A. Sautreanu; L. Vlase, A.-M. Vlase, D. Muntean, Studia UBB Chemia, LXVII, 2022, 3, 17-35.

39. L. David; B. Moldovan; Studia UBB Chemia, LXVII, 2022, 3, 37-44.

40. http://analitica.inycom.es/es-es/.

41. G. Stanciu; C. Chirila; S. Dobrinas; T. Negreanu-Pirjol; Rev. Chim. (Bucharest), 2010, 61 (1), 41-44.

42. A. Popescu; T. Negreanu – Pîrjol; C. Rosca; M. Arcus; L. Bucur; V. Istudor Ovidius Univ. Ann. Che., 2011, 22, 62-66.

43. http://www.murfatlar.com/site/

44. ASRO Standard Roman, SR EN 14130. Produse alimentare, Determinarea vitaminei C prin HPLC, Comitetul European de Standardizare, 2003.

45. I. G. Tanase; G. L. Radu; A. Pana; M. Buleandra; Validarea metodelor analitice, Principii teoretice si studii de caz, Ed. Printech, Bucuresti, Romania, 2007, pp. 111.

46. N. Matei; G. L. Radu; G. Truica; S. Eremia; S. Dobrinas; G. Stanciu; A. Popescu; Anal. Meth., 2013, 5 (18), 4675-4679.

47. A. Kesic; M. Mazalovic; A. Crnkic; B. Catovic; S. Handzidedic; G. Dragosevic; Eur. J. Sci. Res., 2009, 32, 95-101.

48. J. Lachman; M. Sulc; K. Faitova; V. Pivec; Int. J. Wine Res., 2009, 1, 101-121.

Downloads

Published

2025-12-16

How to Cite

MATEI, N., BIRGHILA, S., DOBRINAS, S., LUPU, E. C., & POPESCU, A. (2025). HPLC/DAD ANALYSIS OF VITAMIN C AND ANTIOXIDANT CAPACITY DETERMINATION OF VITIS VINIFERA L. GRAPES DURING RIPENING. Studia Universitatis Babeș-Bolyai Chemia, 70(4), 219–232. https://doi.org/10.24193/subbchem.2025.4.12

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.