METHOD VALIDATION FOR COPPER DETERMINATION IN HUMAN HAIR SAMPLES THROUGH GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY
DOI:
https://doi.org/10.24193/subbchem.2025.1.13Keywords:
GFAAS, hair, copper, validationAbstract
A simple, cheap, and sensitive analytical method was validated for the determination of copper in human hair after microwave digestion. Method validation parameters such as linearity, precision, accuracy, limit of detection (LOD) and limit of quantification (LOQ) were determined. A graphite furnace atomic absorption spectrophotometer has been used. The developed method was linear in the concentration range of 2 - 20 μg/L with a 0.9979 coefficient of determination. The recoveries obtained for the copper ranged from 90.46-94.96%, with a precision not exceeding 3.95% relative standard deviation (RDS%) and system suitability test with RSD% lower than 1.58%. LOD was found to be 0.05632 μg/g and LOQ 0.18745 μg/g. The analyzed samples were from healthy humans and the study shown similar concentration of copper in hairs collected from adult, teenager men and female. The proposed method was considered adequate for the determination of copper in hair samples.
References
1. C. Croitoru; Tratat de stiinta alimentatiei si cunoasterea alimentelor. Bazele alimentatiei si sanatatea, Editura AGIR, Bucuresti, Romania, 2014, pp. 473.
2. M. Herman; A. Przybylowicz; E. Florek; W. Piekoszewski; J. of Anal. Chem., 2013, 68, 360-367.
3. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2015 Scientific Opinion on Dietary Reference Values for copper. EFSA Journal 2015; 13(10):4253, pp. 51.
4. T. Sakai; M. Wariishi; K. Nishiyama; Biol. Trace Elem. Res, 2000, 77(1), 43-50.
5. M. Nasiri-Majd; M.A. Taher; H. Fazelirad; Ionics, 2016, 22, 289-296.
6. F. Shah; T.G. Kazi; H.I. Afridi; N. Kazi; J.A. Baig; A.Q. Shah; S. Khan; N.F. Kolachi; S.K. Wadhwa; Biol. Trace Elem. Res. 2011, 141(1-3), 131-48.
7. T.G. Kazi; H.I. Afridi; G.H. Kazi; M.K. Jamali; M.B. Arain; N. Jalbani; Clin. Chim. Acta, 2006, 369(1), 52-60.
8. O.A. Denisenko; P.S. Novikov; N.A. Cherevko; A.N. Kucher; E.S. Ikhalainen; V.I. Otmahov; A.V. Obukhova; Mosc. Univ. Chem. Bull., 2019, 74, 149-152.
9. M. Herman, A. Przybylowicz, E. Florek, W. Piekoszewski. J Anal Chem 2013, 68, 360–367.
10. J. Guo, W. Deng, L. Zhang, Ch.Li, P. Wu, M. Peiling, Biol. Trace Elem. Res., 2007, 116, 3, 257- 271.
11. H.S. Park, K.O. Shin, J.S. Kim, Biol. Trace Elem. Res., 2007, 116, 2, 119-130.
12. M.Slotnick, J. Nriagu, M. Johnso, A. Linder, K. Savoie, H. Jamil, A. Hammad, Biol. Trace Elem. Res., 2005, 107, 2, 113-126.
13. A. Unkiewicz Winiarczyk, A. Bagniuk, K. Gromysz Kalkowska, E. Szubartowska, Biol. Trace Elem. Res., 2009, 128, 2, 152-160.
14. K. Sreenivasa Rao, T. Balaji, Т. Prasada Rao, Y. Babu, G.R.K. Naidu, Spectrochim. Acta, Part B, 2002, 57, 1333-1338.
15. W. Ashraf, A. Jaffar, K. Anwer, U. Ehsan, Envi ron. Poll., 1995, 87, 61-64.
16. A. Sukumar, R. Subramanian, R., Biol. Trace Elem. Res., 2005, 107, 113-126.
17. I. Bancuta; A. Chilian; O.R. Bancuta; F. Stan; S. Mihai; V. Miron_Alexe; J. Sci.Arts, 2022, 22(4), 965-976.
18. N. Dalali M. Ashouri, S. Nakisa, J Iran Chem Soc., 2012, 9, 181–188
19. S. Ata; F.H. Wattoo; M. Ahmed; M.H. Sarwar Wattoo; A.S. Tirmizi; A. Wadood; Alex. J. Med., 2015, 51(1), 19-23.
20. AOAC Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals. AOAC International, Gaithersburg, MD, USA, 2002.
21. The Commission of the European Communities. Commission decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official Journal of European Communities, 2002, 1, p. 29.
22. N. Dalali; M. Ashouri; S. Nakisa; J. Iran. Chem. Soc., 2012, 9, 181-188.
23. F.U. Tian; Y.H. Chen; Y.A.N. Zhang; J. Anal. Chem., 2015, 70, 436-439.
24. B. Czerny; K. Krupka; M. Ożarowski A. Seremak-Mrozikiewicz, Sci. World J., Article ID 953181, 2014, 1-15
25. K.H. Kim; E. Kabir; S.A. Jahan; Environt. Int., 2016, 222, 89-90.
26. E.H.N. Pehlic; H. Husein; A. Aldžić-Baltić; New Technologies, Development and Application, I. Karabegović (Ed.): NT 2018, LNNS, 2019, 42, p. 561.
27. G. Izydorczyk; M. Mironiuk; S. Baśladyńska; M. Mikulewicz; K. Chojnacka; Environ. Res., 2021, 196, 110441
28. J.R. Forero-Mendieta; J.D. Varón-Calderón; D.A. Varela-Martínez; D.A. Riaño-Herrera; R.D. Acosta-Velásquez; J.A. Benavides-Piracón; Separations. 2022, 9, 158, 1-14.
29. X. Dong; Y. Nakaguchi; K. Hiraki; Anal. Sci. 1998, 14, 785-789.
30. N.F. Kolachi; T.G. Kazi; H.I. Afridi; N. Kazi; G.A. Kandhro; A.Q. Shah; J.A. Baig S.K. Wadhwa; S. Khan; F. Shah; M.K. Jamali; M.B Arain; Biol. Trace Elem. Res., 2011, 143(1), 116-130.
31. https://www.berghof-instruments.com/en/products/speedwave-entry/ Application Report; SPEEDwave Entry V 9.0; S.19/1, www.berghof.com, 53-0202-87-00-01-003; V 9.0; S.35/1www.berghof.com, 53-0202-87-00-01-001
32. A.G. Gonzalez; A. Herrador; Trends in Analytical Chemistry, 2007, 26, 227-238.
33. O. Magnusson; Eurachem Guide: The Fitness for Purpose of Analytical Methods - A Laboratory Guide to Method Validation and Related Topics, http://www.eurachem.org 2nd ed. June 14, 2015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.