EXPERIMENTAL DESIGN-BASED OPTIMIZATION APPROACHES IN UPLC METHOD DEVELOPMENT: SIMULTANEOUS QUANTITATIVE ESTIMATION OF SULFADIAZINE AND TRIMETHOPRIM IN A COMBINED VETERINARY FORMULATION
DOI:
https://doi.org/10.24193/subbchem.2025.4.10Keywords:
UPLC, optimization, experimental design, sulfadiazine, trimethoprim, pharmaceutical analysisAbstract
This study reports a comparative application of three different experimental designs to develop ultra-performance liquid chromatography (UPLC) methods for simultaneous quantification of sulfadiazine and trimethoprim in veterinary tablets. The effects of column temperature, buffer ratio, and flow rate on chromatographic response were systematically evaluated by response surface methodology using full factorial design (FFD), Box–Behnken design (BBD), and central composite design (CCD). Full quadratic models were constructed and evaluated for each design, using statistical parameters and studying the response surface plots. Then, optimal conditions providing efficient peak resolution in shortest runtime were calculated, and experimentally confirmed. FFD and BBD produced nearly identical optimal conditions, while CCD yielded conditions with shorter run time and sufficient resolution. The optimal conditions were determined from two experimental design methods: the first set from FFD and BBD (collectively referred to as FFD/BBD-UPLC), and the second set from CCD (referred to as CCD-UPLC). Both sets of conditions underwent system suitability tests and were validated for linearity, limits of detection and quantification, precision, accuracy, and specificity. Recoveries for sulfadiazine and trimethoprim were within 99.3-100.5% with relative standard deviations less than 1.8%. The developed methods were successfully applied to commercial veterinary tablet analysis, with statistically comparable assay results in accordance with the label claims for both drugs.
References
1. C. M. Lathers; J. Clin. Pharmacol., 2001, 41: 595–599.
2. S. H. Zinner; K. H. Mayer; Sulfonamides and Trimethoprim, in Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 8th ed.; R. Dolin and M.J. Blaser, Eds.; Saunders: Philadelphia, USA, 2015. pp. 410–418.
3. A. Espinosa-Mansilla; F. Salinas; I. De Orbe Paya; Anal. Chim. Acta, 1995, 313: 103–112.
4. A. M. Galvez; J. V. G. Mateo; J. Martínez Calatayud; Journal of Pharmaceutical and Biomedical Analysis, 2002, 30: 535–545.
5. Ş. E. Hişmioğulları; E. Yarsan; E. Dinç; J. Anim. Vet. Adv., 2010, 9: 857–861.
6. F. Khattab; S. Riad; M. Rezk; H. Marzouk; J. Planar. Chromatogr. - Mod. TLC, 2014, 27: 113–119.
7. D. Zou; X. Wu; G. Nan; Chinese Pharmaceutical Journal, 1998, 33: 106–108.
8. L. Y. Fan; H. L. Chen; X. G. Chen; Z. D. Hu; J. Sep. Sci., 2003, 26: 1376–1382.
9. M. Iyer; M. Honrao; S. Y. Gabhe; Indian Drugs, 1994, 31: 497–499.
10. J. Shao; F. F. Mao; X. D. Tu; Yao xue xue bao = Acta pharmaceutica Sinica, 1992, 27: 375–380.
11. M. A. Bezerra; R. E. Santelli; E. P. Oliveira; L. S. Villar; L. A. Escaleira; Talanta, 2008, 76: 965–977.
12. E. Dinç; Chemometric strategies in chromatographic analysis of pharmaceuticals, in Chemometrics in Chromatography, 1st ed.; Ł. Komsta, Y. Vander Heyden, and J. Sherma, Eds.; CRC Press: Boca Raton, 2018. pp. 381–414.
13. G. Hanrahan; K. Lu; Crit. Rev. Anal. Chem., 2006, 36: 141–151.
14. R. G. Brereton; Experimental Design, in Chemometrics: Data Analysis for the Laboratory and Chemical Plant, 2nd ed. John Wiley & Sons: Wiltshire, England, 2003. pp. 15–117.
15. D. C. Montgomery; Design and Analysis of Experiments. 8th Ed. ed. 2013: John Wiley & Sons.
16. R. H. Myers; D. C. Montgomery; C. M. Anderson-Cook; Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 3rd ed. Wiley series in probability and statistics. 2009, Hoboken, N.J.: Wiley. xiii, 680 p.
17. S. Atila Karaca; N. Rashidova; A. Uğur; D. Yeniceli Uğur; Chemical Papers, 2020, 74: 1541–1549.
18. S. Aliyeva; S. Atila Karaca; A. Uğur; A. G. Dal Poçan; D. Yeniceli Uğur; Chemical Papers, 2020, 74: 4443–4451.
19. E. R. V. Almeida; A. S. Melo; A. S. Lima; V. A. Lemos; G. S. Oliveira; C. F. Cletche; A. S. Souza; M. A. Bezerra; Food Chemistry, 2025, 480: 143849.
20. Z. Zhang; B. Xiaofeng. Comparison About the Three Central Composite Designs with Simulation. in 2009 International Conference on Advanced Computer Control. 2009.
21. T. Rakić; B. Jančić Stojanović; A. Malenović; D. Ivanović; M. Medenica; Talanta, 2012, 98: 54–61.
22. T. Rakić; B. J. Stojanović; M. Jovanović; A. Malenović; D. Ivanović; M. Medenica; Anal. Lett., 2013, 46: 1198–1212.
23. E. Dinç; Z. C. Ertekin; G. Rouhani; J. Liq. Chromatogr. Related Technol., 2015, 38: 970–976.
24. E. Büker; E. Dinç; J. Chromatogr. Sci., 2017, 55: 154–161.
25. N. Ünal; E. Dinç; Food Anal. Methods, 2025, 18: 1255–1268.
26. M. Tobiszewski; A. Mechlinska; J. Namiesnik; Chem. Soc. Rev., 2010, 39: 2869–2878.
27. N. Nakov; J. Acevska; K. Brezovska; Z. Kavrakovski; A. Dimitrovska; Green strategies toward eco-friendly HPLC methods in pharma analysis, in High Performance Liquid Chromatography-Recent Advances and Applications, 1st ed.; O. Núñez, et al., Eds.; IntechOpen: London, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
