NANO-STRUCTURED Nd-Fe-B THIN FILMS DEPOSITED ON GLASS SUBSTRATE BY FLASH EVAPORATION METHOD
DOI:
https://doi.org/10.24193/subbchem.2025.3.05Keywords:
nanostructured thin film, NdFeB thin films, microstructure, characterization of thin films, thin film surface analysis, nanomagnetic properties of NdFeB thin filmsAbstract
Nd-Fe-B nanostructured thin layers have been growth on the glass substrate by the "flash" evaporation (FE) method. The microscopic and surface structure analysis of the Nd-Fe-B thin films investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) demonstrate these thin films to be nanostructured.The temperature dependence of the specific magnetization of the films in the 80 ≤ T ≤ 800 K range, measured by the ponderomotive method showed that the magnetization of the Nd-Fe-B nanostructured thin films before corrosion did not exceed 85 A×m2×kg-1 at 77 K. In such Nd-Fe-B nano thin films the long-range structural order is destroyed. After corrosive action on the thin films, their specific magnetization value increased to 140-155 A×m2×kg-1, most probably because of the formation of Fe3O4 (iron oxide) and the presence of free iron ions on the surface of the nanometric Nd-Fe-B layer upon heating the samples to 1050 K. XPS spectra confirmed the presence of Fe3O4, FeOOH and Nd(OH)3.
References
1. J. Thielsch; D. Hinz; L. Schultz; O.Gutfleisch; J. Magn. Magn. Mat., 2010, 322(20), 3208-3213. https://doi.org/10.1016/j.jmmm.2010.05.064
2. R. Sueptitz; K. Tschulik; M. Uhlemann; M. Katter; L. Schultz; A Gebert; Corr. Sci., 2011, 53(9), 2843-2852. https://doi.org/10.1016/j.corsci.2011.05.022
3. H. Sepehri-Amin; Y. Une; T. Ohkubo; K. Hono; M. Sagawa; Scripta Mater., 2011, 65(5), 396-399. https://doi.org/10.1016/j.scriptamat.2011.05.006
4. W.F. Li; H. Sepehri-Amin; T. Ohkubo; N. Hase; K. Hono; Acta Mater., 2011, 59(8), 3061-3069. https://doi.org/10.1016/j.actamat.2011.01.046
5. W.B. Cui; Y.K. Takahashi; K. Hono; Acta Mater., 2011, 59(20), 7768-7775. https://doi.org/10.1016/j.actamat.2011.09.006
6. V.V. Ovchinnokov; Mössbauer Analysis of the Atomic and Magnetic Structure of Alloys, Cambridge International Science Publishers: UK, 2006. ISBN: 1-904602-13-4
7. P. Gutlich; E. Bill; A.X. Trautwein; Mössbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, Springer-Verlag: Berlin, Heidelberg, 2011. ISBN: 978-3-540-88427-9
8. L.K.E.B Serrona; A. Sugimura; R. Fujisaki; T. Okuda; N. Adachi; H. Ohsato;I. Sakamoto; A. Nakanishi; M. Motokawa; Mater. Sci. Eng.: B, 2003, 97(1), 59-63. https://doi.org/10.1016/S0921-5107(02)00401-4
9. Y.G. Ma;Z. Yang;M. Matsumoto;A. Morisako;S. Takei; J. Magn. Magn. Mater., 2003, 267(3), 341-346. https://doi.org/10.1016/S0304-8853(03)00402-5
10. C. Constantinescu; N. Scarisoreanu; A. Moldovan; M. Dinescu; L. Petrescu; G. Epureanu; Appl. Surf. Sci., 2007, 253(19), 8192-8196. https://doi.org/10.1016/j.apsusc.2007.02.165
11. M. Ştefan; E.J. Popovici; I. Baldea; A. Mesaros; L. Muresan; R. Grecu; Studia UBB Chemia, 2006, LI, 2, 147-151.
12. E. Burzo, Studia UBB Chemia, 2021, LXVI, 3, 63-72. https://doi.org/10.24193/subbchem.2021.3.02
13. J.M. Song; J. Korean Phys. Soc., 2001, 39, 314-317.
14. L.K.E.B. Serrona; A. Sugimura; N. Adachi; T. Okuda; H. Osato; I. Sakamoto; A. Nakanishi; M. Motokawa; D.H. Ping; K. Hono; Appl. Phys. Lett., 2003, 82, 1751-1753. https://doi.org/10.1063/1.1561576
15. S.N. Piramanayagam; M. Matsumoto; A. Morisako; J. Magn. Magn. Mater., 2000, 212(1-2), 12-16. https://doi.org/10.1016/S0304-8853(99)00597-1
16. PCPDFWIN, Joint Committee on Powder Diffraction Standards, International Centre for Diffraction Data, JCPDS-ICDD, v. 2.01, # 88-2285; 1998.
17. PCPDFWIN, Joint Committee on Powder Diffraction Standards, International Centre for Diffraction Data, JCPDS-ICDD, v. 2.01, # 74-1877; 1998.
18. PCPDFWIN, Joint Committee on Powder Diffraction Standards, International Centre for Diffraction Data, JCPDS-ICDD, v. 2.01, # 74-2195; 1998.
19. PCPDFWIN, Joint Committee on Powder Diffraction Standards, International Centre for Diffraction Data, JCPDS-ICDD, v. 2.01, # 83-2035; 1998.
20. A.M. Popescu; J. Calderon Moreno; K. Yanushkevich;A. Aplevich; O. Demidenko; E.I. Neacsu; V. Constantin; J. Braz. Chem. Soc. 2024, 35, 1, e-20230089, 1-12. https://dx.doi.org/10.21577/0103-5053.20230089
21. S. Mao; H. Yang; Z. Song; J. Li; H. Ying; K. Sun; Corros. Sci., 2011, 53(5), 1887-1894. https://doi.org/10.1016/j.corsci.2011.02.006
22. D.A. Shirley; Phys. Rev. B, 1972, 5, 4709-4714. https://doi.org/10.1103/PhysRevB.5.4709
23. J.F. Moulder; W.F. Stickle; P.E. Sobol; K.D. Bomben; Handbook of X-ray Photo-electron Spectroscopy, Physical Electronics USA, Inc., Chamhassen, 1995.
24. R.J. Lad; V.E. Henrich; Surf. Sci., 1988, 193(1-2), 81-93. https://doi.org/10.1016/0039-6028(88)90324-X
25. E. Paparazzo; Appl. Surf. Sci., 1986, 259(1-2), 1-12. https://doi.org/10.1016/0169-4332(86)90021-8
26. P. Mills; J.L. Sullivan; J. Phys. D-Appl. Phys.,1983, 16(5), 723-732. https://doi.org/10.1088/0022-3727/16/5/005
27. D.D. Hawn; B.M. DeKoven; Surf. Interface Anal.,1987, 10(2-3), 63-74. https://doi.org/10.1002/sia.740100203
28. M. Muhler; R.Schlogl; G. Ertl; J. Catal.,1992, 138(2), 413-444. https://doi.org/10.1016/0021-9517(92)90295-S
29. A.P. Grosvenor; B.A. Kobe; M.C. Biesinger;N.S. McIntyre; Surf. Interface Anal. 2004; 36: 1564–1574.DOI: 10.1002/sia.1984
30. C. Lyu;·L. Ju; X. Yang; L. Song; N. Liu; J. Mater. Sci., 2020, 31, 4797-4807. https://doi.org/10.1007/s10854-020-03041-2
31. S. Lasek; M. Kursa; K. Konecna; Proceeding of Metall Conference, 2011, Brno, Cehia, p.1-5.
32. K.I. Yanushkevich; Methods of specific magnetization and magnetic susceptibility measurement, Assurance system of measurement uniformity of the Republic of Belarus, MVI. MN 3128-2009, BelSIM: Minsk, 2009.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.