Chemometric Insights Into Grape Stems: Antioxidant Capacity, Phenolic Composition, and Mineral Profile

Authors

DOI:

https://doi.org/10.24193/subbchem.2024.4.09

Keywords:

Vitis vinifera, stem extracts, flavonols, potassium

Abstract

The primary objective of this investigation was to assess the total polyphenolic content (TPC), identify and quantify individual polyphenols, and evaluate their radical scavenging activity (RSA), as well as determine the mineral composition in stem extracts from nine distinct Vitis vinifera varieties. The total phenolic content in grape stem extracts ranged from 34.87 to 76.95 mg gallic acid equivalents (GAE) per gram of dry weight (d.w.). These extracts exhibited significant free radical scavenging activity, ranging from 0.344 to 0.898 mmol Trolox equivalents (TE) per gram d.w. Stem extracts were predominantly characterized by flavan-3-ols, flavonols, and phenolic acids. Catechin and quercetin-3-glucuronide were identified as the most abundant components, with concentrations of up to 1.858 mg/g d.w. and 1.315 mg/g d.w., respectively. Potassium (K) emerged as the most abundant element in all samples, with content ranging from 7.297 mg/g d.w. to 16.695 mg/g d.w., followed by calcium (Ca), phosphorus (P), and magnesium (Mg).

References

1. A. Llobera; J. Canellas; Food Chem., 2007, 101, 659–666

2. A. Teixeira; N. Baenas; R. Dominguez-Perles; A. Barros; E. Rosa; D. A. Moreno; C. Garcia-Viguera; Int. J. Mol. Sci., 2014, 15, 15638–15678

3. J. M. Souquet; B. Labarbe; C. Le Guerneve; V. Cheynier; M. Moutounet; J. Agric. Food Chem., 2000, 48, 1076-1080

4. A. Apostolou; D. Stagos; E. Galitsiou; A. Spyrou; S. Haroutounian; N. Portesis; Food Chem. Toxicol., 2013, 61, 60–68

5. C. Leal; C. M. Costa; A. I. R. Barros; I. Gouvinhas; Waste Biomass Valori., 2021, 12, 1313–1325

6. E. Karvela; D. P. Makris; N. Kalogeropoulos; V. T. Karathanos; Talanta, 2009, 79, 1311–1321

7. M. R. Gonzalez-Centeno; M. Jourdes; A. Femenia; S. Simal; C. Rossello; P. L. Teissedre; J. Agric. Food Chem., 2012, 60, 11850-11858

8. J. F. Ayala-Zavala; V. Vega-Vega; C. Rosas-Domınguez; H. Palafox-Carlos; J. Villa-Rodriguez; M. W. Siddiqui; J. Davila-Avina; G. Gonzalez Aguilar; Food Res. Int., 2011, 44, 1866–1874

9. V. Silva; G. Igrejas; V. Falco; T. P. Santos; C. Torres; A. M. P. Oliveira; J. E. Pereira; J. S. Amaral; P. Poeta; Food Control, 2018, 92, 516–522

10. E. S. Cetin; D. Altinoz; E. Tarcan; N. G. Baydar; Ind. Crops Prod., 2011, 34, 994-998

11. I. Romero; A. Benito; N. Dominguez; E. Garcia-Escudero; I. Martin; Span J. Agric. Res., 2014, 12, 206-214

12. A. E. Kondi; S. Meti; B. V. Champa; M. S. Nagaraja; Int. J. Curr. Microbiol. App. Sci., 2018, 7, 447-453

13. Brody T; National Biochemistry, Academic, San Diego, USA 1994

14. Schachter M; The Importance of Magnesium to Human Nutrition, 1996

15. S. Hemalatha; K. Patel; Food Chem., 2007, 102, 1328-1336

16. L. P. Christensen; W. Peacock; 2000; Mineral nutrition and fertilization. In: Raisin Production Manual. University of California Division of Agricultural and Natural Resources Publication 3393, Oakland, CA. 102 – 114

17. M. Gastol; I. Domagala-Swiatkiewicz; S. Afr. J. Enol. Vitic., 2014, 35, 217-225

18. Kabata-Pendias, A; Trace Elements in Soils and Plants. CRC Press, New York, USA, 2011

19. T. Milićević; M. Aničić Urošević; D. Relić; G. Vuković; S. Škrivanj; A. Popović; Sci. Total Environ., 2018, 626, 528–545

20. M. G. Volpe; C. F. La; F. Volpe; De A Matia, V. Serino; F. Petitto; C. Zavalonni; F. Limone; R. Pellecchia; P. P. De Prisco; M. Di Stasio; Food Chem., 2009, 117, 553–560

21. M. Edelstein; M. Benhur; Sci. Hortic., 2018, 234, 431-444

22. M. A. Bustamante; R. Moral; C. Paredes; A. Pe; M. D. Pe; Waste Manag., 2008, 28, 372–380

23. G. Spigno; D. M. De Faveri; J. Food Eng., 2007, 78, 793-801

24. M. Monagas; S. C. Gomez-Cordove; B. Bartolome; O. Laureano; J. M. Ricardo Da Silva; J. Agric. Food Chem., 2003, 51, 6475-6481

25. D. Villaño; M. S. Fernández-Pachón; A. M. Troncoso; M. C. García-Parrilla; Anal Chim Acta., 2005, 538, 391-398

26. I. Gouvinhas; M. Queiroz; M. Rodrigues; I. R. N. A. Barros Ana; Polyphenols in Plants. 2019, 381-394

27. M. Anastasiadi; H. Pratsinis; D. Kletsas; A. L. Skaltsounis; S. A. Haroutounian; LWT-Food Sci. Technol., 2012, 48, 316-322

28. A. Barros; A. Girones-Valaplana; A. Teixeira; J. Collado-Gonzales; D. A. Moreno; A. Gil-Izquierdo; E. Rosa; R. Dominiquez-Perles; Food Res. Int., 2014, 65, 375-384

29. A. Topalović; M. Mikulič – Petkovšek; J. Food Agric. Environ., 2010, 8, 223-227

30. C. G. M. Heijnen; G. R. M. M. Haenen; J. A. J. M. Vekemans; A. Bast; Environ. Toxicol. and Pharmacol., 2001, 10, 199-206

31. V. L. Singleton; J. Rossi; Am. J. Enol Vitric., 1965, 16, 144-158

32. W. Brand-Wiliams; M. E. Curelier; C. Berset; Lebensm. Wiss. Technol., 1995, 28, 25-30

33. M. N. Mitić; J. M. Souquet; M. V. Obradović; S. S. Mitić; Food Sci. Biotechnol., 2012, 21, 1619-1626.

Downloads

Published

2024-12-18

How to Cite

MITIĆ, M., STANKOV-JOVANOVIĆ, V. P., MITIĆ, J., NIKOLIĆ, J., KARIOTI, A., & LAZARI, D. (2024). Chemometric Insights Into Grape Stems: Antioxidant Capacity, Phenolic Composition, and Mineral Profile. Studia Universitatis Babeș-Bolyai Chemia, 69(4), 129–144. https://doi.org/10.24193/subbchem.2024.4.09

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 

You may also start an advanced similarity search for this article.