Chemometric Insights Into Grape Stems: Antioxidant Capacity, Phenolic Composition, and Mineral Profile
DOI:
https://doi.org/10.24193/subbchem.2024.4.09Keywords:
Vitis vinifera, stem extracts, flavonols, potassiumAbstract
The primary objective of this investigation was to assess the total polyphenolic content (TPC), identify and quantify individual polyphenols, and evaluate their radical scavenging activity (RSA), as well as determine the mineral composition in stem extracts from nine distinct Vitis vinifera varieties. The total phenolic content in grape stem extracts ranged from 34.87 to 76.95 mg gallic acid equivalents (GAE) per gram of dry weight (d.w.). These extracts exhibited significant free radical scavenging activity, ranging from 0.344 to 0.898 mmol Trolox equivalents (TE) per gram d.w. Stem extracts were predominantly characterized by flavan-3-ols, flavonols, and phenolic acids. Catechin and quercetin-3-glucuronide were identified as the most abundant components, with concentrations of up to 1.858 mg/g d.w. and 1.315 mg/g d.w., respectively. Potassium (K) emerged as the most abundant element in all samples, with content ranging from 7.297 mg/g d.w. to 16.695 mg/g d.w., followed by calcium (Ca), phosphorus (P), and magnesium (Mg).
References
1. A. Llobera; J. Canellas; Food Chem., 2007, 101, 659–666
2. A. Teixeira; N. Baenas; R. Dominguez-Perles; A. Barros; E. Rosa; D. A. Moreno; C. Garcia-Viguera; Int. J. Mol. Sci., 2014, 15, 15638–15678
3. J. M. Souquet; B. Labarbe; C. Le Guerneve; V. Cheynier; M. Moutounet; J. Agric. Food Chem., 2000, 48, 1076-1080
4. A. Apostolou; D. Stagos; E. Galitsiou; A. Spyrou; S. Haroutounian; N. Portesis; Food Chem. Toxicol., 2013, 61, 60–68
5. C. Leal; C. M. Costa; A. I. R. Barros; I. Gouvinhas; Waste Biomass Valori., 2021, 12, 1313–1325
6. E. Karvela; D. P. Makris; N. Kalogeropoulos; V. T. Karathanos; Talanta, 2009, 79, 1311–1321
7. M. R. Gonzalez-Centeno; M. Jourdes; A. Femenia; S. Simal; C. Rossello; P. L. Teissedre; J. Agric. Food Chem., 2012, 60, 11850-11858
8. J. F. Ayala-Zavala; V. Vega-Vega; C. Rosas-Domınguez; H. Palafox-Carlos; J. Villa-Rodriguez; M. W. Siddiqui; J. Davila-Avina; G. Gonzalez Aguilar; Food Res. Int., 2011, 44, 1866–1874
9. V. Silva; G. Igrejas; V. Falco; T. P. Santos; C. Torres; A. M. P. Oliveira; J. E. Pereira; J. S. Amaral; P. Poeta; Food Control, 2018, 92, 516–522
10. E. S. Cetin; D. Altinoz; E. Tarcan; N. G. Baydar; Ind. Crops Prod., 2011, 34, 994-998
11. I. Romero; A. Benito; N. Dominguez; E. Garcia-Escudero; I. Martin; Span J. Agric. Res., 2014, 12, 206-214
12. A. E. Kondi; S. Meti; B. V. Champa; M. S. Nagaraja; Int. J. Curr. Microbiol. App. Sci., 2018, 7, 447-453
13. Brody T; National Biochemistry, Academic, San Diego, USA 1994
14. Schachter M; The Importance of Magnesium to Human Nutrition, 1996
15. S. Hemalatha; K. Patel; Food Chem., 2007, 102, 1328-1336
16. L. P. Christensen; W. Peacock; 2000; Mineral nutrition and fertilization. In: Raisin Production Manual. University of California Division of Agricultural and Natural Resources Publication 3393, Oakland, CA. 102 – 114
17. M. Gastol; I. Domagala-Swiatkiewicz; S. Afr. J. Enol. Vitic., 2014, 35, 217-225
18. Kabata-Pendias, A; Trace Elements in Soils and Plants. CRC Press, New York, USA, 2011
19. T. Milićević; M. Aničić Urošević; D. Relić; G. Vuković; S. Škrivanj; A. Popović; Sci. Total Environ., 2018, 626, 528–545
20. M. G. Volpe; C. F. La; F. Volpe; De A Matia, V. Serino; F. Petitto; C. Zavalonni; F. Limone; R. Pellecchia; P. P. De Prisco; M. Di Stasio; Food Chem., 2009, 117, 553–560
21. M. Edelstein; M. Benhur; Sci. Hortic., 2018, 234, 431-444
22. M. A. Bustamante; R. Moral; C. Paredes; A. Pe; M. D. Pe; Waste Manag., 2008, 28, 372–380
23. G. Spigno; D. M. De Faveri; J. Food Eng., 2007, 78, 793-801
24. M. Monagas; S. C. Gomez-Cordove; B. Bartolome; O. Laureano; J. M. Ricardo Da Silva; J. Agric. Food Chem., 2003, 51, 6475-6481
25. D. Villaño; M. S. Fernández-Pachón; A. M. Troncoso; M. C. García-Parrilla; Anal Chim Acta., 2005, 538, 391-398
26. I. Gouvinhas; M. Queiroz; M. Rodrigues; I. R. N. A. Barros Ana; Polyphenols in Plants. 2019, 381-394
27. M. Anastasiadi; H. Pratsinis; D. Kletsas; A. L. Skaltsounis; S. A. Haroutounian; LWT-Food Sci. Technol., 2012, 48, 316-322
28. A. Barros; A. Girones-Valaplana; A. Teixeira; J. Collado-Gonzales; D. A. Moreno; A. Gil-Izquierdo; E. Rosa; R. Dominiquez-Perles; Food Res. Int., 2014, 65, 375-384
29. A. Topalović; M. Mikulič – Petkovšek; J. Food Agric. Environ., 2010, 8, 223-227
30. C. G. M. Heijnen; G. R. M. M. Haenen; J. A. J. M. Vekemans; A. Bast; Environ. Toxicol. and Pharmacol., 2001, 10, 199-206
31. V. L. Singleton; J. Rossi; Am. J. Enol Vitric., 1965, 16, 144-158
32. W. Brand-Wiliams; M. E. Curelier; C. Berset; Lebensm. Wiss. Technol., 1995, 28, 25-30
33. M. N. Mitić; J. M. Souquet; M. V. Obradović; S. S. Mitić; Food Sci. Biotechnol., 2012, 21, 1619-1626.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.