Electrochemical Characterization and DNA Interaction Studies of a Novel Copper Schiff Base Complex: Insights From Cyclic Voltammetry and Molecular Docking

Authors

  • Chahinaz ZOUBEIDI Department of Renewable Energies, Faculty of Hydrocarbons, Renewable Energies and Earth and Universe Sciences, University of Ouargla, Ouargla, Algeria. https://orcid.org/0000-0003-2247-4920
  • Ali OURARI Laboratory of Electrochemistry, Molecular Engineering and Redox Catalysis (LEIMCR), Faculty of Technology, Ferhat ABBAS University of Sétif-1, Sétif 19000, Algeria https://orcid.org/0000-0003-1978-0716
  • Elhafnaoui LANEZ Department of Chemistry, VTRS Laboratory, Faculty of Sciences, University of El Oued, El Oued, Algeria https://orcid.org/0000-0002-6543-2547
  • Touhami LANEZ Department of Chemistry, VTRS Laboratory, Faculty of Sciences, University of El Oued, El Oued, Algeria. Corresponding author: touhami-lanez@univ-eloued.dz https://orcid.org/0000-0002-3978-7635

DOI:

https://doi.org/10.24193/subbchem.2024.4.02

Keywords:

Copper(II) complex, Electro-polymerization, catalytic reduction, DNA binding affinity, AutoDock

Abstract

In this study, we investigate the electrochemical properties of a novel copper complex (CuL2) derived from the Schiff base ligand N-3-bromopropylsalicylaldimine (LH). We also examine its interaction with chicken blood double-stranded DNA (cb-ds DNA) in phosphate buffer solution (PB) at physiological pH 7.2 using cyclic voltammetry (CV) techniques. The interaction mechanism of nitrite with CuL2, involving the CuII/CuI redox system, is explored. The CuL2 complex was electropolymerized on glassy carbon (GC) and fluorine tin oxide (FTO). The morphology of PolyCuL2 formed on FTO was analyzed using scanning electron microscopy (SEM) and its elemental composition determined by EDX analysis. The modified electrode polyCuL2/GC exhibited efficient catalytic activity for the electroreduction of oxygen (O2) in homogeneous electrocatalytic media. The binding constant (Kb) of the DNA-CuL2 adduct, determined from CV measurements, was found to be 1.33×105, closely matching the value obtained from molecular docking studies (1.75×105). Docking studies indicate that the CuL2 complex binds to DNA in the minor groove binding mode. The anodic peak potential shift in the negative direction suggests an electrostatic interaction between CuL2 and DNA.

References

1. A. Ourari; C. Zoubeidi; W. Derafa; S. Bouacida; H. Merazig; E. Morallon; Res. Chem. Intermed., 2017, 43, 3163–3182.

2. A. Ourari; K. Ouari; W. Moumeni; L. Sibous; G. M. Bouet; M. A. Khan; Transit. Met. Chem., 2006, 31, 169–175.

3. C. Santos; M. Vilas-Boas; M. F. M. Piedade; C. Freire; M. T. Duarte; B. De Castro; Polyhedron,. 2000, 19, 655–664.

4. A. D. Khalaji; Curr. Trends X-Ray Crystallogr. Chandrasekaran, Q., Ed,. 2011, 161–190.

5. R. K. Parashar; R. C. Sharma; A. Kumar; G. Mohan; Inorg. Chim. Acta,. 1988, 151, 201–208.

6. J. Losada; I. del Peso; L. Beyer; Transit. Met. Chem., 2000, 25, 112–117.

7. Z. Li; J.-T. Hou; S. Wang; L. Zhu; X. He; J. Shen; Coord. Chem. Rev., 2022, 469, 214695.

8. A. Fazal; S. Al-Fayez; L. H. Abdel-Rahman; Z. S. Seddigi; A. R. Al-Arfaj; B. El Ali; M. A. Dastageer; M. A. Gondal; M. Fettouhi; Polyhedron,. 2009, 28, 4072–4076.

9. L. J. Childs; M. Pascu; A. J. Clarke; N. W. Alcock; M. J. Hannon; Chem. Eur. J., 2004, 10, 4291–4300.

10. L. J. Childs; J. Malina; B. E. Rolfsnes; M. Pascu; M. J. Prieto; M. J. Broome; P. M. Rodger; E. Sletten; V. Moreno; A. Rodger; Chem. Eur. J., 2006, 12, 4919–4927.

11. A. A. Amer; H. Ilikti; C. Beyens; J. Lyskawa; U. Maschke; Eur. Polym. J., 2019, 112, 569–580.

12. A. Ourari; B. Ketfi; S. I. R. Malha; A. Amine; J. Electroanal. Chem., 2017, 797, 31–36.

13. G. Mahalakshmi; K. N. Vennila; B. Selvakumar; P. L. Rao; R. Malwade; S. Deval; S. Madhuri; M. Seenivasaperumal; K. P. Elango; J. Biomol. Struct. Dyn., 2020, 38, 3443–3451.

14. P. U. Maheswari; M. Palaniandavar; J. Inorg. Biochem., 2004, 98, 219–230.

15. C. Metcalfe; J. A. Thomas; Chem. Soc. Rev., 2003, 32, 215–224.

16. K. Abdi; H. Hadadzadeh; M. Weil; M. Salimi; Polyhedron,. 2012, 31, 638–648.

17. H. Hadadzadeh; M. Salimi; M. Weil; Z. Jannesari; F. Darabi; K. Abdi; A. D. Khalaji; S. Sardari; R. Ahangari; J. Mol. Struct., 2012, 1022, 172–180.

18. S. Dhar; F. X. Gu; R. Langer; O. C. Farokhzad; S. J. Lippard; Proc. Natl. Acad. Sci., 2008, 105, 17356–17361.

19. S. Dhar; Z. Liu; J. Thomale; H. Dai; S. J. Lippard; J. Am. Chem. Soc., 2008, 130, 11467–11476.

20. I. M. A. Mohamed; A. M. Abu-Dief; 2015.

21. S. Sathiyaraj; G. Ayyannan; C. Jayabalakrishnan; J. Serbian Chem. Soc., 2014, 79, 151–165.

22. T. J. Kistenmacher; T. Sorrell; L. G. Marzilli; Inorg. Chem.,. 1975, 14, 2479–2485.

23. J. A. Carrabine; M. Sundaralingam; J. Am. Chem. Soc., 1970, 92, 369–371.

24. A. Ourari; C. Zoubeidi; S. Bouacida; W. Derafa; H. Merazig; Acta Crystallogr. Sect. E Crystallogr. Commun., 2015, 71, m33–m34.

25. S. Rayati; S. Zakavi; M. Koliaei; A. Wojtczak; A. Kozakiewicz; Inorg. Chem. Commun., 2010, 13, 203-207.

26. F. Bedioui; E. Labbe; S. Gutierrez-Granados; J. Devynck; J. Electroanal. Chem., 1991, 301, 267-274.

27. A. Jozwiuk; Z. Wang; D. R. Powell; R. P. Houser; Inorg. Chim. Acta., 394 (2013) 415–422

28. M. Roelsgaard; P. Nørby; E. Eikeland; M. Søndergaard; B. B. Iversen; Dalt. Trans., 2016, 45, 18994–19001.

29. M. Vilas-Boas; C. Freire; B. De Castro; A. R. Hillman; J. Phys. Chem. B,. 1998, 102, 8533–8540.

30. H. Kianfar; L. Keramat; M. Dostani; M. Shamsipur; M. Roushani; F. Nikpour; Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2010, 77, 424–429.

31. C. S. Martin; T. R. L. Dadamos; M. F. S. Teixeira; Sensors Actuators B Chem., 2012, 175, 111–117.

32. T. R. L. Dadamos; M. F. S. Teixeira; Electrochim. Acta., 2009, 54, 4552–4558.

33. I. A. Chepurnaya; M. P. Karushev; E. V Alekseeva; D. A. Lukyanov; O. V Levin; Pure Appl. Chem., 2020, 92, 1239–1258.

34. P. Audebert; P. Hapiot; P. Capdevielle; M. Maumy; J. Electroanal. Chem., 1992, 338, 269–278.

35. J. H. Cameron; S. C. Turner; J. Chem. Soc. Dalt. Trans., 1992, 3285–3289.

36. A. Pui; I. Berdan; I. Morgenstern-Badarau; A. Gref; M. Perrée-Fauvet; Inorg. Chim. Acta,. 2001, 320, 167–171.

37. J.-C. Moutet; A. Ourari; Electrochim. Acta,. 1997, 42, 2525–2531.

38. M. Martins; M. V. Boas; B. de Castro; A. R. Hillman; C. Freire; Electrochim. Acta,. 2005, 51, 304–314.

39. M. A. Thorseth; C. E. Tornow; C. M. Edmund; A. A. Gewirth; Coord. Chem. Rev., 2013, 257, 130–139.

40. N. Li; Y. Ma; C. Yang; L. Guo; X. Yang; Biophys. Chem., 2005, 116, 199–205.

41. A. Shah; M. Zaheer; R. Qureshi; Z. Akhter; M. F. Nazar; Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2010, 75, 1082–1087.

42. G.-C. Zhao; J.-J. Zhu; J.-J. Zhang; H.-Y. Chen; Anal. Chim. Acta,. 1999, 394, 337–344.

43. P. W. Rose; A. Prlić; A. Altunkaya; C. Bi; A. R. Bradley; C. H. Christie; L. Di Costanzo; J. M. Duarte; S. Dutta; Z. Feng; et al.; Nucleic Acids Res., 2017, 45, D271–D281.

44. E. Alolayqi; M. Afzal; A. Alarifi; A. Beagan; M. Muddassir; Crystlals., 2022, 12(1), 15.

45. E. Lanez; L. Bechki; T. Lanez; Chem. Chem. Technol., 2019, 13, 11–17.

46. T. Lanez; H. Benaicha; E. Lanez; M. Saidi; J. Sulfur Chem., 2018, 39, 76–88.

47. R. Vijayalakshmi; M. Kanthimathi; V. Subramanian; B. U. Nair; Biochem. Biophys. Res. Commun., 2000, 271, 731–734.

48. C. Steffen; K. Thomas; U. Huniar; A. Hellweg; O. Rubner; A. Schroer; J. Comput. Chem., 2010, 31, 2967–2970.

Downloads

Published

2024-12-18

How to Cite

ZOUBEIDI, C., OURARI, A., LANEZ, E., & LANEZ, T. (2024). Electrochemical Characterization and DNA Interaction Studies of a Novel Copper Schiff Base Complex: Insights From Cyclic Voltammetry and Molecular Docking. Studia Universitatis Babeș-Bolyai Chemia, 69(4), 21–35. https://doi.org/10.24193/subbchem.2024.4.02

Issue

Section

Articles

Similar Articles

<< < 12 13 14 15 16 17 

You may also start an advanced similarity search for this article.