PROTECTIVE TiO₂ COATINGS PREPARED BY SOL-GEL METHOD ON ZINC
Keywords:
zinc; TiO2, sol-gel method, dip- coating, corrosionAbstract
The objective of this work was to develop new TiO2-based coatings for producing an effective barrier as well as an appropriate support for inhibitors in corrosion protection of zinc. For this purpose, compact and mesoporous titania coatings on zinc substrates were prepared by sol-gel method (dip coating). For preparing mesoporous layers, cationic (cetyltrimethylammonium bromide, CTAB) or non-ionic (Pluronic PE 10300) surfactant templates were applied. The corrosion behaviour of the coatings was evaluated by open circuit potential measurements and Tafel interpretation of the polarization curves. The best corrosion resistance was noticed in the case of TiO2 coated samples prepared in the presence of Pluronic surfactant.
References
D. Wang, G.P. Bierwagen, Progress in Organic Coatings, 2009, 64, 327.
S. Dalbin, G. Maurin, R.P. Nogueira, J. Persello, N. Pommier, Surface and Coatings Technology 2005, 194, 363.
D. Byun, Y. Jin, B. Kim, J. Kee Lee, D. Park, Journal of Hazardous Materials, 2000, 73, 199.
W. Simka, A. Krzakala, D.M. Korotin, Zhidkov I.S., Kurmaev E.Z., Cholakh S.O., Kuna K., Dercz G., Michalska J., Suchanek K., Gorewoda T., Electrochim. Acta, 2013, 96, 180.
P. Kern, P. Schwaller, J. Michler, Thin Solid Films, 2006, 494, 279.
L. Curkovic, H. Otmacic Curkovic, S. Salopekc, M. Majic Renjo, S. Šegota, Corrosion Science, 2013, 77, 176.
L.M. Muresan, Corrosion Protective Coatings for Ti and Ti Alloys Used for Biomedical Implants in “Intelligent Coatings for Corrosion Control”, Eds. A. Tiwari, J. Rawlins, L.H. Hihara, Elsevier, ISBN 978-0-12-411467-8, 2014, Chapter 17, 585
Tao FU, Xiao-Ming WU, Feng WU, Meng LUO, Bing-Hui DONG, Yuan JI, Transactions of Nonferrous Metals Society of China, 2012, 22, 1661.
Teng S, Liang W, Li Z, Ma X, Journal of Alloys and Compounds, 2008, 464, 452.
E. Albert, N. Cotolan, N. Nagy, G. Sáfrán, G. Szabó, L.M. Mureşan, Z. Hórvölgyi, Microporous and Mesoporous Materials, 2015, 206, 102.
E. Volentiru, M. Nyári, G. Szabó, Z. Hórvölgyi, L.M. Mureşan, Periodica Polytechnica Chemical Engineering, 2014, 58, 61.
E. Hild, A. Deák, L. Naszályi, Ö. Sepsi, N. Ábrahám, Z. Hórvölgyi, Journal of Optics
A: Pure and Applied Optics, 2007, 9, 920.
D.S. Hinczewski, M. Hinczewski, F.Z. Tepehan, G.G. Tepehan, Solar Energy Materials and Solar Cells, 2005, 87, 181.
W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C, The Art of Scientific Computing, Cambridge Univ. Press, New York, 1988.
L.V. Lorenz, Ann. Phys. Chem. 1880, 11, 70.
H.A. Lorentz, Theory of Electrons, Teubner, Leipzig, Germany, 1916.
D. Grigoriev, D. Gorin, G.B. Sukhorukov, A. Yashchenok, E. Maltseva, H. Möhwald, Langmuir, 2007, 23, 12388.
A.F. Wells, Structural Inorganic Chemistry, Clarendon Press, Oxford, 1984.
C. Trapalis, N. Todorova, M. Anastasescu, C. Anastasescu, M. Stoica, M. Gartner, M. Zaharescu, T. Stoica, Thin Solid Films, 2009, 517, 6243.
Á. Detrich, E. Hild, N. Nagy, E. Volentiru, Z. Hórvölgyi, Thin Solid Films, 2012, 520, 2537.
E. Albert, P.A. Albouy, A. Ayral, P. Basa, G. Csík, N. Nagy, S. Roualdès, V. Rouessac, G. Sáfrán, Á. Suhajda, Z. Zolnai, Z. Hórvölgyi, RSC Advances, 2015, 5, 59070.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.