ON THE ELECTROCATALYTIC PROPERTIES OF YCo₁₋ₓFeₓO₃(x = 0, 0.5 and 1) PEROVSKITE SERIES
Keywords:
perovskites, cyclic voltammetry, electrocatalytic propertiesAbstract
The results on the investigation of the electrocatalytic activity of YCo1-xFexO3 (x = 0, 0.5 and 1) perovskites towards several redox reactions, are presented. The perovskites were synthesized by solution combustion method using citric acid as a fuel. They are isomorphous with orthorhombic perovskite structure, within the space group Pnma. The electrocatalytic properties of these perovskites were studied by cyclic voltammetry using paraffin impregnated graphite electrode (PIGE) modified with microcrystals of the investigated perovskites. Such modified electrodes were used to study their catalytic properties towards oxidation of OH- ions, oxidation of H2O2 in phosphate buffer and oxidation of CH3OH in alkaline solution. It was found that, in general, the catalytic activity is strongly dependent on the cobalt content.
References
R.H. Mitchell, “Perovskites: Modern and Ancient”, Almaz press – Thunder Bay, 2002.
M.A. Peña, J.L.G. Fierro, Chemical Reviews, 2001, 101, 1981.
S. Yakovleva, L.A. Isupova, V.A. Rogov, V.A. Sadykov, Kinetics and Catalysis, 2008, 49, 261.
C.N.R. Rao, Annual Review of Physical Chemistry, 1989, 40, 291.
S. Bhalla, R. Guo, and R. Roy, Material Research Innovations, 2000, 4, 3.
T. Ishihara, “Perovskite Oxide for Solid Oxide Fuel Cells”, Springer, Dordrecht, 2009.
A. Orera, P.R. Slater, Chemistry of Materials, 2010, 22, 675.
A. Dutta, T. Ishihara, Chemistry of Materials, 2004, 16, 5198.
Y. Wang, X. Yanhong, L. Liqiang, D. Yaing, L. Xiaojuan, H. Anquan, Sensors and Actuators B: Chemical, 2010, 151, 65.
11. D. Ye, Y. Xu, L. Luo, Y. Ding, Y. Wang, X. Liu, L. Xing, J. Pen, Colloids and Surfaces B: Biointerfaces, 2012, 89, 10.
Y. Wang, H. Zhong, X. Li, F. Jia, Y. Shi, W. Zhang, Z. Cheng, L. Zhang, J. Wang, Biosensors and Bioelectronics, 2013, 48, 56.
G.L. Luque, N.F. Ferreyra, A.G. Leyva, G.A. Rivas, Sensors and Actuators B: Chemical, 2009, 142, 331.
G. Wang, Y. Bao, Y. Tian, J. Xia, D. Cao, Journal of Power Sources, 2010, 195, 6463.
Y. Xu, Yanhong, X. Zhang, D. Chen, J. Hou, C. Li, X. Zhu, Current Nanoscience, 2013, 9, 737.
L.F. Liotta, F. Puleo, V. La Parola, S.G. Leonardi, N. Donato, D. Aloisio and G. Neri, Electroanalysis, 2015, 27, 684.
S. Dimitrovska-Lazova, D. Kovacheva, S. Aleksovska, M. Marinšek, P. Tzvetkov, Bulgarian Chemical Communications, 2012, 44, 235.
S. Dimitrovska-Lazova, D. Kovacheva, P. Tzvetkov, Bulgarian Chemical Communications, 2012, 44, 245.
M. Pecovska Gjorgjevich, S. Aleksovska, Marjan Marinšek and Sandra Dimitrovska-Lazova, Journal of the American Ceramic Society, 2014, 97(12), 3864.
M. Pecovska Gjorgjevich, S. Aleksovska, S. Dimitrovska-Lazova, Physica Macedonica, 2012, 61, 21.
S. Dimitrovska-Lazova, V. Mirčeski, D. Kovacheva, S. Aleksovska, Journal of Solid State Electrochemistry, 2012, 16, 219.
S. Dimitrovska-Lazova, S. Aleksovska and P. Tzvetkov, Journal of Chemical Sciences, (accepted for publication).
S. Dimitrovska-Lazova, S. Aleksovska and P. Tzvetkov, V. Mirčeski, D. Kovacheva, Bulgarian Chemical Communications, 2015, 47(1), 245.
F. Scholz, U. Schröder, R. Gulaboski, “Electrochemistry of immobilized particles and droplets”, Springer, Berlin, 2005.
J. OM. Bockris, T. Otagawa, Journal of Physical Chemistry, 1983, 87, 2960.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.