COMPARATIVE STUDY ON COBALT AND NICKEL NPs FOR MWCNT GROWTH BY TCVD SYSTEM

Authors

  • Sepideh Sadat MADANI Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran. Corresponding author: prof.zare@gmail.com. https://orcid.org/0000-0002-9563-1141
  • Karim ZARE Department of Chemistry, Science and Research Branch, Islamic Azad University; Department of Chemistry, Shahid Beheshti University, Tehran, Iran. Email: prof.zare@gmail.com. https://orcid.org/0000-0002-6234-3303
  • Mahmood GHORANNEVISS Department of Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran. Corresponding author: prof.zare@gmail.com.
  • Majid MONAJJEMI Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran. Corresponding author: prof.zare@gmail.com. https://orcid.org/0000-0002-6665-837X

Keywords:

Carbon nanotubes, DC – sputtering, TCVD; Metal catalysts, FESEM, HRTEM

Abstract

In this paper, cobalt and nickel NPs (nanoparticles) effect on carbon nanotubes growth by Thermal chemical vapor deposition (TCVD) is studied. The DC - sputtering system was used to prepare cobalt and nickel thin films on Si substrates. The produced layers were used as metal catalysts for growing carbon nanotubes (CNTs) from acetylene (C2H2) gas in the temperature range of 850°C to 1000°C with an interval of 50°C by Thermal Chemical Vapor Deposition (TCVD) technique. Energy Dispersive X-ray (EDX) measurements were used to investigate the elemental composition of the cobalt and nickel NPs deposited on the Si substrates. Also, Atomic Force Microscopy (AFM) was used to characterize the surface morphology of the Co and Ni nanoparticles on the Si substrates. The grown CNTs on the Co and Ni catalyst at different temperatures have been characterized by Raman spectroscopy, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The results showed that the diameter of CNTs can be controlled by adjusting the growth temperature, and increasing the temperature leads to increasing the diameter of CNTs. It was found that there is a strong relation between diameter and yield of CNTs at different growth temperature with different catalysts (Co and Ni). Also, the grown CNTs at the temperature of the 850°C using Co catalyst among all of the samples (Co and Ni catalysts) have a minimum diameter and maximum yield.

References

Z.L. Tsakadze, K. Ostrikov, C.H. Sow, S.G. Mhaisalkar, Y.C. Boey, Journal of Nanoscience and Nanotechnology, 2010, 10, 6575.

B. Liu, W. Ren, L. Gao, S. Li, S. Pei, C. Liu, C. Jiang, H.-M. Cheng, Journal of the American Chemical Society, 2009, 131, 2082.

H. Yu, D. Liao, M.B. Johnston, B. Li, ACS Nano, 2011, 5, 2020.

B.B. Wang, Q.J. Cheng, X.X. Zhong, Y.Q. Wang, Y.A. Chen, K. Ostrikov, Journal of Applied Physics, 2012, 111, 044317.

D.H. Seo, S. Kumar, K. Ostrikov, Carbon, 2011, 49, 4331.

A. Bianco, K. Kostarelos, M. Prato, Current Opinion in Chemical Biology, 2005, 9, 674.

C.D. Modi, S.J. Patel, A.B. Desai, R.S.R. Murthy, Journal of Applied Pharmaceutical Science, 2011, 1, 103.

C. Journet, W.K. Maser, P. Bernier, P.A. Loiseau, M.L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer, Nature, 1997, 388, 756.

A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Toma´nek, J.E. Fischer, R.E. Smalley, Science, 1996, 273, 483.

H. Dai, Surf. Sci., 2002, 500, 218.

M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Plasma Sources Sci. Technol., 2003, 12, 205.

J.M. Bonard, Thin Solid Films, 2006, 501, 8.

S. Porro, S. Musso, M. Giorcelli, A. Chiodoni, A. Tagliaferro, Physica E, 2007, 37, 16.

A.M. Cassell, J.A. Raymakers, J. Kong, H. Dai, J. Phys. Chem. B., 1999, 103, 6484.

Y. Chen, D. Ciuparu, S. Lim, Y. Yang, G.L. Haller, L. Pfefferle, J. Catal., 2004, 225, 453.

L. Zheng, X. Liao, Y. T. Zhu, Mater. Lett., 2006, 60, 1968.

C. Dang, T. Wang, Appl. Surf. Sci., 2006, 253, 904.

K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska, I. Kiricsi, Appl. Catal. A: Gen., 2000, 199, 245.

O.A. Nerushev, R.E. Morjan, D.I. Ostrovskii, M., Jonsson, M. Sveningsson, F. Rohmund, E. E. B. Campbell, Physica B, 2002, 323, 51.

P. Sampedro-Tejedor, A. Maroto-Valiente, D. M. Nevskaia, V. Mu´n˜oz, I. Rodrı´guez-Ramos, A. Guerrero-Ruı´z, Diamond Relat. Mater., 2007, 16, 542.

A.C. Dupuis, Prog. Mater. Sci., 2005, 50, 929.

W. Zhou, Z. Han, J. Wang, Y. Zhang, Z. Jin, X. Sun, Y. Zhang, C. Yan, Y. Li, Nano Lett., 2006, 6, 2987.

S. Bhaviripudi, E. Mile, S.A. Steiner III, A.T. Zare, M.S. Dresselhaus, A.M. Belcher, J. Kong, J. Am. Chem. Soc., 2007, 129, 1516.

D. Takagi, Y. Homma, H. Hibino, S. Suzuki, Y. Kobayashi, Nano Lett., 2006, 6, 2642.

D. Yuan, L. Ding, H. Chu, Y. Feng, T.P. Mcnicholas, J. Liu, Nano Lett., 2008, 8, 2576.

B. Liu, W. Ren, L. Gao, S. Li, Q. Liu, C. Jiang, H.-M. Cheng, J. Phys. Chem. C, 2008, 112, 19231.

G. Hong, Y. Chen, P. Li, J. Zhang, Carbon, 2012, 50, 2067.

C.J. Lee, J. Park, Y. Huh, J. Yong Lee, Chem. Phys. Lett., 2001, 343, 33.

S. Bandow, S. Asaka, Y. Saito, A.M. Rao, L. Grigorian, E. Richter, P.C. Eklund, Phys. Rev. Lett., 1998, 80, 3779.

F.H. Kaatz, M.P. Siegal, D.L. Overmyer, P.P. Provencio, D.R. Tallant, Appl. Phys. Lett., 2006, 89, 241915.

M. Hoch, " Phase stability of carbon in FCC and BCC metals", Calphad, 1988, 83.

O.V. Yazyev, A. Pasquarello, Phys. Rev. Lett., 2008, 100,156102.

R. Yang, P. Goethel, J. Schwartz, C. Lund, J. Catal., 1990, 122, 206.

G. Samsonov, Powder Metall. Met. Ceram., 1965, 4,75.

G.A. Somorjai, " Introduction to surface chemistry and catalysis", Wiley, New York, 1994.

J. Nørskov, Phys. Rev. B, 1982, 26, 2875.

S. Hofmann, G. Csanyi, A.C. Ferrari, M.C. Payne, J. Robertson, Phys. Rev. Lett., 2005, 95, 36101.

V. Jourdain, C. Bichara, Carbon, 2013, 58, 2.

N. Tripathi, P. Mishra, Harsh, S.S. Islam, " Effect of Growth Temperature on the Diameter Distribution and Yield of Carbon Nanotubes", Physics of Semiconductor Devices, Environmental Science and Engineering, Springer, 2014, 645.

B. RTK, P.S. Harris, "Formation of filamentous carbon in chemistry and physics of carbon", Chemistry and Physics of Carbon, Marcel Dekker, New York, 1978, 83.

B. RTK, Carbon, 1989, 27, 315.

A. Oberlin, M. Endo, T. Koyama, J. Cryst. Growth, 1976, 32, 335.

M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, Carbon, 2002, 40, 2043.

R. Gupta, B.P. Singh, V.N. Singh, T.K. Gupta, R.B. Mathur, Carbon, 2014, 66, 724.

Downloads

Published

2015-03-30

How to Cite

MADANI, S. S. ., ZARE, K. ., GHORANNEVISS, M. ., & MONAJJEMI, M. . (2015). COMPARATIVE STUDY ON COBALT AND NICKEL NPs FOR MWCNT GROWTH BY TCVD SYSTEM. Studia Universitatis Babeș-Bolyai Chemia, 60(1), 213–227. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/chemia/article/view/8419

Issue

Section

Articles

Similar Articles

<< < 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.