CHANGES IN PHYSICO-CHEMICAL CHARACTERISTICS OF HUMAN LOW DENSITY LIPOPROTEIN NANO-PARTICLES BY ELECTROMAGNETIC FIELD EXPOSURE

Authors

  • Soheila ABDI Department of Physics, Safadasht Branch, Islamic Azad University, Safadasht, Tehran, Iran. Corresponding author: naderi.crc@gmail.com. https://orcid.org/0009-0006-4765-7730
  • Davoud DORRANIAN Plasma Physics Research Center, Sciences and Research Branch, Islamic Azad University, Tehran, Iran. Corresponding author: naderi.crc@gmail.com. https://orcid.org/0000-0001-8855-7425
  • Gholam ALI NADERI Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran. Corresponding author: naderi.crc@gmail.com. https://orcid.org/0000-0002-5309-5096
  • Amirnader EMAMI RAZAVI Iran National Tumor Bank, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran. Corresponding author: naderi.crc@gmail.com. https://orcid.org/0000-0002-9863-1200

Keywords:

Electromagnetic field, LDL oxidation, LDL aggregation, LDL zeta potential, LDL mean size

Abstract

Studies on the effects of electromagnetic field (EMF) exposure on cardiovascular function have provided some evidence of a possible action. Low density lipoprotein (LDL) modifications appear as an early step in the promotion and progression of atherosclerosis, the most causes of death in cardiovascular disease (CVD) patients. This study aimed to evaluate the effects of extremely low frequency (ELF) of electromagnetic fields on LDL physico-chemical modifications. LDL was separated by sequential ultracentrifugation and its susceptibility to oxidation was evaluated by continuous monitoring of conjugated dienes formation, using a spectrophotometer. LDL size and zeta potential is determined by zetasizer instrument. The results indicated that moderate ELF-EMFs of 2-4 mT can induce the susceptibility of LDL to oxidation and aggregation. Weak ELF-EMFs of 0.125-0.5 mT caused a decrease in LDL zeta potential in a time and dose dependent manner while in moderate ELF-EMFs of 1-4 mT LDL zeta potential was started to increase after an initial decrease at the first hour of exposure. LDL oxidation and aggregation are two important modifications of LDL, involved in the promotion and progression of atherosclerosis. On the other hand, alteration of the LDL surface charge can interfere with the metabolism of LDL and its interaction with other molecules. Therefore, with regard to the atherogenic effects of ELF-EMFs on LDL, it can be considered as a risk factor in atherosclerosis.

References

M.R. Cook, C. Graham, HD. Cohen, M.M. Gerkovich, Bioelectromagnetics, 1992, 13, 261.

C. Graham, M.R. Cook, HD. Cohen, M.M. Gerkovich, Bioelectromagnetics, 1994, 15, 447.

Z. Tabor, J. Michalski, E. Rokita, Bioelectromagnetics, 2004, 25, 474.

R. Dănulescu, C. Goiceanu, E. Dănulescu, M. Mărgineanu, C. Croitoru, G. Bălăceanu, J. Prev., 2004, 12, 9.

S. Ghione, C. Del Seppia, L. Mezzasalma, M. Emdin, P. Luschi, Bioelectro-magnetics, 2004, 25, 167.

S. Ghione, C.D. Seppia, L. Mezzasalma, L. Bonfiglio, Neurosci. Lett., 2005, 382, 112.

M.L. Sait, A.W. Wood, R.L. Kirsner, Physiol. Measur., 2006, 27, 73.

J. Gmitrov, C. Ohkubo, Bioelectromagnetics, 2002, 23, 329.

J.E. Hokanson, M.A. Austin, J. Cardiovasc. Risk, 1996, 3, 213.

P. Zimetbaum, W.H. Frishman, W.L. Ooi, M.P. Derman, M. Aronson, L.I. Gidez, H.A. Eder, Arteriosclerosis, Thromb. Vascular Biol., 1992, 12, 416.

E. Luo, G. Shen, K. Xie, X. Wu, Q. Xu, L. Lu, X.Jing, Bioelectromagnetics, 2007, 28, 608.

B. Kula, A. Sobczak, R. Grabowska-Bochenek, D. Piskorska, J. Occup. Health-Eng. Ed.,1999, 41, 177.

D. Steinberg, N, Engl, J. Med.,1989, 320, 915.

D. Steinberg, J. Lipid Res., 2009, 50, S376.

H. Itabe, Clin. Rev. Allergy Immunol., 2009, 37, 4.

H.F. Hoff, J. O’Neil, Arteriosclerosis, Thromb. Vascular Biol., 1991, 11, 1209.

N. Rabbani, L. Godfrey, M. Xue, F. Shaheen, M. Geoffrion, R. Milne, P.J. Thornalley, Diabetes, 2011, 60, 1973.

J. Vakkilainen, G. Steiner, J.-C. Ansquer, F. Aubin, S. Rattier, C. Foucher, A. Hamsten, M.-R. Taskinen, Circulation, 2003, 107, 1733.

S.M. Grundy, J. Clin. Endocrinol. Metab., 2004, 89, 2595.

S. Abdi, D. Dorranian, A.N. Emami Razavi, G.A. Naderi, M. Boshtam, M. Ghoran-Nevis, Bioelectromagnetics, 2012, 9999, 1.

H. Berg, Bioelectrochem. Bioenerg., 1993,31, 1.

D. Duda, J. Grzesik, K. Pawlicki, J. Trace Elem. Electrolyt. Health Dis., 1991, 5, 181.

B. Kula, Bioelectrochem. Bioenerg.,1996, 39, 27.

D. Steinberg, J. Biol. Chem., 1997, 272, 20963.

K. Zwirska-Korczala, J. Jochem, M. Adamczyk-Sowa, P. Sowa, R. Polaniak, E. Birkner, M. Latocha, K. Pilc, R. Suchanek, J. Physiol. Pharmacol., 2005, 56, 101.

K.J. Fernie, D.M. Bird, Evidence Environ. Res., 2001, 86, 198.

J. Rollwitz, M. Lupke, M. Simkó, Biochim. Biophys. Acta, 2004, 1674, 231.

S. Roy, Y. Noda, V. Eckert, M.G. Traber, A. Mori, R. Liburdy, L. Packer, FEBS Lett., 1995, 376,164.

R.K. Adair, Bioelectromagnetics, 1999, 20, 255.

C.T.W. Eveson, B. Brocklehurst, P.J. Hore, R.K.A. McLauchlan, Int. J. Rad. Biol., 2000, 76, 1509.

J.W. Heinecke, A.G. Suits, M. Aviram, A. Chait, Arterioscler., Thromb., Vasc. Biol., 1991, 11, 1643.

D. Meyer, M. Mayans, P. Groot, K. Suckling, K. Bruckdorfer, S. Perkins, Biochem. J, 1995, 310, 417.

D.L. Sparks, C. Chatterjee, E. Young, J. Renwick, N.R. Pandey, Chem. Phys. Lipids, 2008, 154, 1.

H.I. Nishida, H. Arai, T. Nishida, J. Biol. Chem., 1993, 268, 16352.

M. Yano, M. Inoue, E. Maehata, T. Shiba, M. Yamakado, Y. Hirabayashi, M. Taniyama, S. Suzuki, Clin. Chim. Acta, 2004, 340, 93.

L. Kuller, A. Arnold, R. Tracy, J. Otvos, G. Burke, B. Psaty, D. Siscovick, D.S. Freedman, R. Kronmal, Arterioscler., Thromb., Vasc. Biol., 2002, 22, 1175.

K. Higashitani, H. Iseri, K. Okuhara, A. Kage, S. Hatade, J. Coll. Interface Sci., 1995, 172, 383.

O. Panasenko, M. Borin, O. Azizova, K. Arnol’d, Biofizika, 1985, 30, 822.

I. Maor, T. Hayek, R. Coleman, M. Aviram, Arterioscler. Thromb. Vasc. Biol., 1997, 17, 2995.

T.J. Bronzert, H.B. Brewer, Clin. Chem., 1977, 23(11), 2089.

M.L. Rufail, S.C. Ramage, R. van Antwerpen, FEBS Lett., 2006, 580(22), 5155.

Markwell, Mary Ann K. et al., Anal. Biochem., 1978, 87(1), 206.

S.P. Gieseg, H. Esterbauer, FEBS Lett., 1994, 343(3), 188.

A. Emami Razavi, M. Pourfarzam, M. Ani, G.A. Naderi, Biomarkers Med., 2013, 7, 235.

Downloads

Published

2016-03-30

How to Cite

ABDI, S. ., DORRANIAN, D. ., ALI NADERI, G. ., & EMAMI RAZAVI, A. . (2016). CHANGES IN PHYSICO-CHEMICAL CHARACTERISTICS OF HUMAN LOW DENSITY LIPOPROTEIN NANO-PARTICLES BY ELECTROMAGNETIC FIELD EXPOSURE. Studia Universitatis Babeș-Bolyai Chemia, 61(1), 185–197. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/chemia/article/view/8292

Issue

Section

Articles

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.