APPROXIMATING THE ENERGY OF NANOTUBES

Authors

  • Siamak FIROUZIAN Department of Mathematics, Payame Noor University, Tehran, Iran. Corresponding author: siamfirouzian@pnu.ac.ir. https://orcid.org/0000-0002-0713-4998
  • Morteza FAGHANI Department of Mathematics, Payame Noor University, Tehran, Iran. Corresponding author: siamfirouzian@pnu.ac.ir. https://orcid.org/0000-0002-9415-3934
  • Ali Reza ASHRAFI Department of Mathematics, Faculty of Mathematical Sciences; Department of Nanocomputing, Institute of Nanoscience and Nanotechnology, University of Kashan, Iran. Corresponding author: siamfirouzian@pnu.ac.ir. https://orcid.org/0000-0002-2858-0663

Keywords:

Eigenvalue, energy, nanotube

Abstract

The eigenvalues of a graph are the eigenvalues of its adjacency matrix and the energy of a molecular graph is defined as the sum of absolute values of its eigenvalues. In this paper, some classical methods are used to evaluate the energy of nanotubes.

References

N. Trinajstic, “Chemical Graph Theory”, CRC Press, Boca Raton, FL, 1992.

N. Biggs, “Algebraic Graph Theory”, Second ed., Cambridge University Press, Cambridge, 1993.

D. Cvetković, M. Doob, H. Sachs, “Spectra of Graphs–Theory and Application”, third ed., Johann Ambrosius Barth Verlag, Heidelberg, Leipzig, 1995.

I. Gutman, Theoret. Chim. Acta (Berlin), 1977, 45, 79.

I. Gutman, Ber. Math.-Statist. Sekt. Forschungszentrum Graz., 1978, 103, 1.

I. Gutman, Topics Curr. Chem., 1992, 162, 29.

I. Gutman, The energy of a graph: old and new results, In: “Algebraic Combinatorics and Applications”, A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Springer-Verlag, Berlin, 2001, pp. 196–211.

I. Gutman, S. Zare Firoozabadi, J.A. de la Peña and J. Rada, MATCH Commun. Math. Comput. Chem., 2007, 57, 435.

G.Y. Katona, M. Faghani and A.R. Ashrafi, Discuss. Math. Graph Theory, 2014, 34, 751.

M. Ghorbani, M. Faghani, A.R. Ashrafi, S. Heidari-Rad and A. Graovac, MATCH Commun. Math. Comput. Chem., 2014, 71, 341.

P.E. John and H. Sachs, Discrete Math., 2009, 309, 2663.

S. Madani and A.R. Ashrafi, Appl. Math. Letters, 2012, 25, 2365.

A.R. Ashrafi, F. Nassaj, M. Faghani and P.V. Khadikar, Studia Universitatis Babes-Bolyai Chemia, 2012, 57, 137.

M.V. Diudea, Bull. Chem. Soc. Jpn., 2002, 75, 487.

M.V. Diudea and P.E. John, MATCH Commun. Math. Comput. Chem., 2001, 44, 103.

M.V. Diudea, B. Parv and E.C. Kirby, MATCH Commun. Math. Comput. Chem., 2003, 47, 53.

M.V. Diudea and E.C. Kirby, Fullerene Sci. Technol., 2001, 9, 445.

A. Parvan-Moldovan and M.V. Diudea, Iranian J. Math. Chem., 2015, 6, 163.

M.D. Diudea, O. Ursu and L.Cs. Nagy, TOPOCLUJ, Babes-Bolyai University, Cluj, 2002.

P. Young, “Everything you wanted to know about data analysis and fitting but were afraid to ask”, Springer Briefs in Physics, DOI 10.1007/97833191905181.

Downloads

Published

2016-03-30

How to Cite

FIROUZIAN, S. ., FAGHANI, M. ., & ASHRAFI, A. R. . (2016). APPROXIMATING THE ENERGY OF NANOTUBES. Studia Universitatis Babeș-Bolyai Chemia, 61(1), 89–95. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/chemia/article/view/8283

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.