DIETHYLENE GLYCOL BASED DEEP EUTECTIC SOLVENTS AND THEIR PHYSICAL PROPERTIES

Authors

  • Rusul Khaleel IBRAHIM Department of Civil Engineering, University of Malaya, Kuala Lumpur, Malaysia. Corresponding author: adeeb.hayyan@yahoo.com. https://orcid.org/0000-0001-9949-2022
  • Maan HAYYAN Department of Chemical Engineering, Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, Malaysia; Department of Chemical Engineering, Faculty of Engineering, Sohar University, Sultanate of Oman. Email: Department of Chemical Engineering, Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, Malaysia; Department of Chemical Engineering, Faculty of Engineering, Sohar University, Sultanate of Oman. Email: maan_hayyan@yahoo.com. https://orcid.org/0000-0002-2179-0801
  • Mohammed Abdulhakim ALSAADI Department of Chemical Engineering, Centre for Ionic Liquids (UMCiL), University of Malaya; Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia. Corresponding author: adeeb.hayyan@yahoo.com. https://orcid.org/0000-0001-9278-6490
  • Shaliza IBRAHIM Department of Civil Engineering, University of Malaya, Kuala Lumpur, Malaysia. Corresponding author: adeeb.hayyan@yahoo.com. https://orcid.org/0000-0001-9413-957X
  • Adeeb HAYYAN Department of Chemical Engineering, Centre for Ionic Liquids (UMCiL), University of Malaya; Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia. Email: adeeb.hayyan@yahoo.com. https://orcid.org/0000-0002-3738-8198
  • Mohd Ali HASHIM Department of Chemical Engineering, Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, Malaysia. Corresponding author: adeeb.hayyan@yahoo.com. https://orcid.org/0000-0002-0570-6788

DOI:

https://doi.org/10.24193/subbchem.2017.4.37

Keywords:

deep eutectic solvents; ionic liquids; diethylene glycol; physical properties; chemical processes; industrial applications

Abstract

In this study, diethylene glycol (DEG), as a hydrogen bond donor (HBD), was mixed with three ammonium based salts, namely N,N-diethylethanolammnium chloride, tetra-n-butylammonium bromide and choline chloride, as well as two phosphonium based salts, namely benzyl-triphenylphosphonium chloride and methyltriphenylphosphonium bromide, to prepare five different deep eutectic solvents (DESs) series. The DESs freezing points and functional groups were investigated. In addition, the physical properties viscosity, density, conductivity and surface tension were determined as function of temperature in the particular temperature range of 293.15- 353.15 K. It is worth mentioning that all examined DESs were stable and in liquid phase at room temperature which emphasize their promising potential to be utilized as inexpensive environment-friendlier solvents. Owing to their low recorded freezing points and viscosities, DEG based DESs can be effortlessly processed without any further heating required in diverse industrial applications.

References

Patel, D.D. and J.M. Lee, The Chemical Record, 2012, 12, 329.

Paiva, A., R. Craveiro, I. Aroso, M. Martins, R.L. Reis, and A.R.C. Duarte, ACS Sustainable Chemistry & Engineering, 2014, 2, 1063.

Hou, Y., Y. Gu, S. Zhang, F. Yang, H. Ding, and Y. Shan, Journal of Molecular Liquids, 2008, 143, 154.

Dai, Y., J. van Spronsen, G.-J. Witkamp, R. Verpoorte, and Y.H. Choi, Analytica chimica acta, 2013, 766, 61.

Lee, Y.R. and K.H. Row, Journal of Industrial and Engineering Chemistry, 2016.

Durand, E., J. Lecomte, and P. Villeneuve, European Journal of Lipid Science and Technology, 2013, 115, 379.

Tang, B. and K.H. Row, Monatshefte für Chemie-Chemical Monthly, 2013, 144, 1427.

Pena‐Pereira, F. and J. Namieśnik, ChemSusChem, 2014, 7, 1784.

Carriazo, D., M.C. Serrano, M.C. Gutiérrez, M.L. Ferrer, and F. del Monte, Chemical Society Reviews, 2012, 41, 4996.

Hayyan, M., M.A. Hashim, M.A. Al-Saadi, A. Hayyan, I.M. AlNashef, and M.E. Mirghani, Chemosphere, 2013, 93, 455.

Hayyan, M., M.A. Hashim, A. Hayyan, M.A. Al-Saadi, I.M. AlNashef, M.E. Mirghani, and O.K. Saheed, Chemosphere, 2013, 90, 2193.

Maugeri, Z. and P.D. de María, Green Chem, 2011, 13, 82.

Hayyan, M., C.Y. Looi, A. Hayyan, W.F. Wong, and M.A. Hashim, PloS one, 2015, 10, e0117934.

Abbott, A.P., G. Frisch, J. Hartley, and K.S. Ryder, Green Chemistry, 2011, 13, 471.

Abbott, A.P., D. Boothby, G. Capper, D.L. Davies, and R.K. Rasheed, Journal of the American Chemical Society, 2004, 126, 9142.

Yang, D., M. Hou, H. Ning, J. Zhang, J. Ma, G. Yang, and B. Han, Green Chemistry, 2013, 15, 2261.

Li, X., M. Hou, B. Han, X. Wang, and L. Zou, Journal of Chemical & Engineering Data, 2008, 53, 548.

Su, W.C., D.S.H. Wong, and M.H. Li, Journal of Chemical & Engineering Data, 2009, 54, 1951.

Morrison, H.G., C.C. Sun, and S. Neervannan, International journal of pharmaceutics, 2009, 378, 136.

Hayyan, M., F.S. Mjalli, M.A. Hashim, and I.M. AlNashef, Fuel Processing Technology, 2010, 91, 116.

Abbott, A.P., G. Capper, K.J. McKenzie, and K.S. Ryder, Journal of Electroanalytical Chemistry, 2007, 599, 288.

Guo, Z. and X. Lin, Journal of Electroanalytical Chemistry, 2005, 576, 95.

Shahbaz, K., F. Mjalli, M. Hashim, and I. AlNashef, Thermochimica acta, 2011, 515, 67.

Shahbaz, K., F. Mjalli, M. Hashim, and I. AlNashef, Fluid phase equilibria, 2012, 319, 48.

Yadav, A., S. Trivedi, R. Rai, and S. Pandey, Fluid Phase Equilibria, 2014, 367, 135.

Manfra, L., A. Tornambè, F. Savorelli, A. Rotini, S. Canepa, M. Mannozzi, and A. Cicero, Journal of hazardous materials, 2015, 284, 130.

Marraffa J.M., Diethylene Glycol, in: Wexler P., eds., Encyclopedia of Toxicology (Third Edition), Academic Press, Oxford, 2014, 140.

Abbott A.P., Boothby D., Capper G., Davies D.L., Rasheed R.K., J. Am. Chemical Society, 2004, 126, 9142.

Liu, Y.-T., Y.-A. Chen, and Y.-J. Xing, Chinese Chemical Letters, 2014, 25, 104.

Zhang, Q., K.D.O. Vigier, S. Royer, and F. Jérôme, Chemical Society Reviews, 2012, 41, 7108.

Stuart, B., Infrared spectroscopy. 2005: Wiley Online Library.

Coates, J., Encyclopedia of analytical chemistry, 2000.

Roeges, N.P., A guide to the complete interpretation of infrared spectra of organic structures. 1994: Wiley.

Smith, B., Boca Raton, 1999.

Hayyan, M., T. Aissaoui, M.A. Hashim, M.A. AlSaadi, and A. Hayyan, Journal of the Taiwan Institute of Chemical Engineers, 2015, 50, 24.

Luo, J., O. Conrad, and I.F. Vankelecom, Journal of Materials Chemistry, 2012, 22, 20574.

Abbott, A.P., R.C. Harris, K.S. Ryder, C. D'Agostino, L.F. Gladden, and M.D. Mantle, Green Chemistry, 2011, 13, 82.

Shahbaz, K., S. Baroutian, F. Mjalli, M. Hashim, and I. AlNashef, Thermochimica Acta, 2012, 527, 59.

Abbott, A.P., G. Capper, D.L. Davies, R.K. Rasheed, and V. Tambyrajah, Chemical Communications, 2003, 70.

Abbott, A.P., G. Capper, and S. Gray, ChemPhysChem, 2006, 7, 803.

Abbott, A.P., J.C. Barron, K.S. Ryder, and D. Wilson, Chemistry–A European Journal, 2007, 13, 6495.

Kareem, M.A., F.S. Mjalli, M.A. Hashim, and I.M. AlNashef, Journal of Chemical & Engineering Data, 2010, 55, 4632.

Shahbaz, K., F. Mjalli, M. Hashim, and I. AlNashef, Energy & Fuels, 2011, 25, 2671.

Williams, J.D., W. Svrcek, and W. Monnery, Developments in Chemical Engineering and Mineral Processing, 2003, 11, 267.

Mjalli, F.S., J. Naser, B. Jibril, V. Alizadeh, and Z. Gano, Journal of Chemical & Engineering Data, 2014, 59, 2242.

Abo-Hamad, A., M. Hayyan, M.A. AlSaadi, and M.A. Hashim, Chemical Engineering Journal, 2015, 273, 551.

Abbott, A.P., G. Capper, D.L. Davies, and R. Rasheed, Inorganic chemistry, 2004, 43, 3447.

AlOmar, M.K., M. Hayyan, M.A. Alsaadi, S. Akib, A. Hayyan, and M.A. Hashim, Journal of Molecular Liquids, 2016, 215, 98.

Bahadori, L., M.H. Chakrabarti, F.S. Mjalli, I.M. AlNashef, N.S.A. Manan, and M.A. Hashim, Electrochimica Acta, 2013, 113, 205.

Abbott, A.P., R.C. Harris, and K.S. Ryder, The Journal of Physical Chemistry B, 2007, 111, 4910.

Giap, S.G.E., Journal of Physical Science, 2010, 21, 29.

Vila, J., P. Gines, J. Pico, C. Franjo, E. Jimenez, L. Varela, and O. Cabeza, Fluid Phase Equilibria, 2006, 242, 141.

Gan, Q., D. Rooney, M. Xue, G. Thompson, and Y. Zou, Journal of Membrane Science, 2006, 280, 948.

Zhou, Z.B., H. Matsumoto, and K. Tatsumi, Chemistry–A European Journal, 2004, 10, 6581.

Nishida, T., Y. Tashiro, and M. Yamamoto, Journal of Fluorine Chemistry, 2003, 120, 135.

Huddleston, J.G., A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker, and R.D. Rogers, Green chemistry, 2001, 3, 156.

Zhao, D., Z. Fei, C.A. Ohlin, G. Laurenczy, and P.J. Dyson, Chemical communications, 2004, 2500.

Berthod, A., M. Ruiz-Angel, and S. Carda-Broch, Journal of Chromatography A, 2008, 1184, 6.

Greaves, T.L., A. Weerawardena, C. Fong, I. Krodkiewska, and C.J. Drummond, The Journal of Physical Chemistry B, 2006, 110, 22479.

Greaves T.L., Weerawardena A., Fong C., Drummond C.J., Langmuir, 2007, 23, 402.

Kulkarni, P.S., L.C. Branco, J.G. Crespo, M.C. Nunes, A. Raymundo, and C.A. Afonso, Chemistry–A European Journal, 2007, 13, 8478.

Yoshida, Y., K. Muroi, A. Otsuka, G. Saito, M. Takahashi, and T. Yoko, Inorganic chemistry, 2004, 43, 1458.

Zhou, Z.B., H. Matsumoto, and K. Tatsumi, ChemPhysChem, 2005, 6, 1324.

Mateus, N.M., L.C. Branco, N.M. Lourenço, and C.A. Afonso, Green Chemistry, 2003, 5, 347.

Branco, L.C., J.N. Rosa, J.J. Moura Ramos, and C.A. Afonso, Chemistry–A European Journal, 2002, 8, 3671.

Gupta, O.D., B. Twamley, and M.S. Jean’ne, Tetrahedron letters, 2004, 45, 1733.

Zhou, Z.-B., H. Matsumoto, and K. Tatsumi, Chemistry Letters, 2004, 33, 886.

Downloads

Published

2017-12-29

How to Cite

IBRAHIM, R. K. ., HAYYAN, M. ., ALSAADI, M. A. ., IBRAHIM, S. ., HAYYAN, A. ., & HASHIM, M. A. . (2017). DIETHYLENE GLYCOL BASED DEEP EUTECTIC SOLVENTS AND THEIR PHYSICAL PROPERTIES. Studia Universitatis Babeș-Bolyai Chemia, 62(4, Tome II), 433–450. https://doi.org/10.24193/subbchem.2017.4.37

Issue

Section

Articles

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.