HEAT TRANSFER CHARACTERISTICS OF NANOFLUID FLOW AROUND A ROTATING CYLINDER
DOI:
https://doi.org/10.24193/subbchem.2018.1.17Keywords:
unsteady flow, nanofluid, volume fraction, Reynolds number, finite volume, circular cylinderAbstract
The forced convective flow and heat transfer of nanofluids past a rotating cylinder placed in a uniform cross stream is investigated numerically. The computations are carried out at a representative Reynolds number (Re) of 200. The dimensionless cylinder rotation rate (α) is varied between 0 and 6. The range of nanoparticle volume fractions (φ) considered is 0 ≤ φ ≤ 5%. Two-dimensional and unsteady mass continuity, momentum, and energy equations have been discretized using finite volume method. SIMPLE algorithm has been applied for solving the pressure linked equations. The effect of rotation rates (α) on fluid flow and heat transfer were investigated numerically. In addition, time-averaged (lift and drag coefficients and Nusselt number) results were obtained and compared with the literature data. A good agreement was obtained for both the local and averaged values.
References
D.B. Ingham, T.Tang, J. Comput. Phys., 1990, 87, 91–107.
Y.M. Chen, Y.R. Ou, A. J. Pearlstein, J. Fluid Mech., 1993, 253, 449–484.
S. Kang, Phys. Fluids, 2006, 18, 047106-1–047106-12.
M. Zdravkovich, Flow Around Circular Cylinders, vol. 1, Oxford Science Publication, 1997
M.B. Glauert, Proceedings Royal Society London A, 1957, 242, 108–115.
S. Kang and H. Choi, Physics of Fluids, 1999, 11, 3312-3320.
S. Mittal and B. Kumar, Journal of Fluid Mechanics, 2003, 476, 303-334.
H. Nemati, M. Farhady, K. Sedighi, and E. Fattahi, Thermal Sci., 2010, 3, No. 3, 859–878.
M.R.H. Nobari and J. Ghazanfarian, Thermal Sci., 2010, 49, No. 10, 2026–2036.
S.B. Paramane, Sharma, A., Int. J. Heat and Mass Transf., 2009, 52, 3205-3216.
S.B. Paramane, A. Sharma, Int. J. Heat Mass Transf., 2010, 53, 4672-4683.
F.H. Barnes, J. Phys. D: Appl. Phys. 2000, 33, 141–144.
D. Stojkovic, P. Schon, M. Breuer and F. Durst, Phys. Fluids, 2002, 14, 3160–3178.
E. Abu-Nada, K. Ziyad, M. Saleh, Y. Ali, J. Heat Transfer, 2008, 130, 084505-1-4.
S. Sarkar, S. Ganguly, G. Biswas, Int. J. Heat Mass Transfer 2012, 55, 4783–99.
M.S. Valipour, A. Z. Ghadi, Int. Commun. Heat Mass Transfer 2011, 38: 1296–304.
S. Sarkar, S. Ganguly, A. Dalal, ASME-Heat Transfer, 2014, 136: 062501-1-10.
S. Sarkar, S. Ganguly, A. Dalal, ASME-J. Heat Transfer 2012, 134: 122501-1-8.
R. El Akoury, M. Braza, R. Perrin, Harran, G. and Horau, Y., J. Fluid Mech., 2008, 607, 1-11.
J. Koo and C. Kleinstreuer, Int Commun Heat Mass Transf., 2005, 32, 1111–1119.
B.C. Pak and Cho Y.I., Exp. Heat Transf., 1998, 11, 151 - 170.
J. Buongiorno, ASME J. Heat Transfer, 2006, 128, 240-250.
M. Corcione, Int. J. Therm. Sci., 2010, 49 1536 - 1546.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.