RAPID ULTRASOUND ASSISTED REDUCTION OF AZO DYES FOR SCREENING BANNED AROMATIC AMINES
DOI:
https://doi.org/10.24193/subbchem.2018.1.12Keywords:
Azo dyes, Green chemistry, Ultrasound assisted reduction (UAR), Banned aromatic aminesAbstract
The screening of harmful colorants in consumer products is a global concern. The majority of textile and leather exports undergo extensive quality testing, consuming a lot of time and energy. Consequently, improvements in the rate of reduction of standard method for harmful azo dyes, EN 14362-1:2012 (Annex. F), by combining conventional heating with ultrasonication have been explored to adopt a greener approach. Basic dye behavior was investigated by UV-visible spectroscopy, so that more efficient reduction methods could be designed for high-tech instruments of analysis like HPLC with diode array detection (DAD) and GC with mass spectrophotometer (GC-MS). Four dyes were selected, namely Acid red 1 (AR-1), Direct blue 15 (DB-15), Direct red 28 (DR-28), and Direct red 7 (DR-7) containing one harmful aromatic amine in their structures which make them critical for analyses. Basic observation that absorbance of dyes (having azo chromospheres in their structure) decreases with their reduction to amines was exploited using UV-visible spectroscopic analysis with preselected absorption bands in the visible region from 400 to 700 nm. The dyes were subjected to two types of ultrasound assisted reduction (UAR) methods; less vigorous (experimental method 1) and more vigorous (experimental method 2). All dyes achieved reductions through ultrasonic assistance, higher than the reference method within ten min of time at or before 70 °C except DR-28, according to experimental method 1. According to experimental method 2, DB-15 and DR-7 achieved reductions equivalent to the reference method in 15 min of UAR at 70 °C whereas AR-1 and DR-28 achieved in 20 min of UAR. Finally, DR-28 was further subjected to experimental method 3, which was simply EN 14362-1:2012 (F) method for colorants, with UAR. At this stage, standard techniques of analysis exploiting HPLC-DAD and GC-MS were used. According to experimental method 3, even 15 min of UAR caused a greater reduction of DR-28 dye as compared to the standard method (BS EN 14362-1, F). Ultrasonication at 70°C reduced the total dye reduction time by 42% and energy consumption by 85%.
References
M. J. Prival, S. J. Bell, V. D. Mitchell, M. D. Peiperl, V. L. Vaughan, Mutation Research/Genetic Toxicology, 1984, 136, 33-47.
F. Calogero, H. S. Freeman, J. F. Esancy, W. M. Whaley, B. J. Dabney, Dyes and Pigments, 1987, 8, 431-447.
M. Kojima, M. Degawa, Y. Hashimoto, M. Tada, Biochemical and biophysical research communications, 1991, 179, 817.
C. P. Hartman, G. E. Fulk, A. Andrews, Mutation Research/Genetic Toxicology, 1978, 58, 125.
E. Messerly, J. Fekete, D. Wade, J. Sinsheimer, Environmental and molecular mutagenesis, 1987, 10, 263.
H. S. Freeman, J. F. Esancy, L. D. Claxton, Chemtech, 1991, 21, 438.
Y. Hashimoto, H. Watanabe, M. Degawa, Gann= Gan, 1981, 72, 921.
B. de Campos Ventura-Camargo, M. A. Marin-Morales, Textiles and Light Industrial Science and Technology, 2013, 2, 85-103.
G. de Aragao Umbuzeiro, H. S. Freeman, S. H. Warren, D. P. De Oliveira, Y. Terao, T. Watanabe, L. D. Claxton, Chemosphere, 2005, 60, 55-64.
Environment Canada/Health Canada. “Aromatic Azo- and Benzidine-based substances”, Screening assessment report, 2012, pp. 3-6.
BSI. Colorants - Methods for determination of certain aromatic amines. BS EN 14362-1, E (Annex F). The British Standards Institution, 2012.
ISO. Chemical tests for the determination of certain azo colorants in dyed leathers. ISO/DIS 17234-1/IUC 20-1. International organization for standards, 2012.
BSI. Textiles - Methods for determination of certain aromatic amines derived from azo colorants. BS EN 14362-1, E. The British Standards Institution, 2012.
R. D. Voyksner, R. Straub, J. T. Keever, H. S. Freeman, H. Whei-Neen, Environmental science & technology, 1993, 27, 1665-1672.
A. Puntener, D. Mausezahl, C. Page, Journal of the Society of Leather Technologists and Chemists, 1993, 77, 1.
A. G. Pindar, H. M. Tinsley, Analyst, 1984, 109, 1101-1102.
R. F. Straub, R. D. Voyksner, J. T. Keever, Analytical Chemistry, 1993, 65, 2131-2136.
D. Muralidharan, V. S. Rao, Journal of the Society of Leather Technologists and Chemists, 1994, 78, 139-41.
F. Planelles, E. Verdu, D. Campello, N. Grane, J. Santiago, Journal of the Society of Leather Technologists and Chemists, 1998, 82, 45-52.
M. C. Garrigós, F. Reche, M. L. Marin, A. Jiménez, Journal of Chromatography A, 2002, 976, 309-317.
M. Mościpan, M. Zarębska, R. Kulesza, Chemik, 2016, 70, 135-143.
F. Parolin, U. M. Nascimento, E. B. Azevedo, Environmental technology, 2013, 34, 1247-1253.
G. Tezcanli‐Güyer, N. H. Ince, I. A. Alaton, Coloration technology, 2003, 119, 292-296.
G. Tezcanli-Guyer, N. H. Ince, Ultrasonics Sonochemistry, 2003, 10, 235-240.
A. S. Özen, V. Aviyente, G. Tezcanli-Güyer, N. H. Ince, The Journal of Physical Chemistry A, 2005, 109, 3506-3516.
L. H. Keith, L. U. Gron, J. L. Young, Chemical reviews, 2007, 107, 2695-2708.
M. de la Guardia, S. Garrigues, “Handbook of green analytical chemistry”., Wiley Online Library, 2012, chapter 7, pp. 117.
A. S. Özen, V. Aviyente, G. Tezcanli-Güyer and N. H. Ince, The Journal of Physical Chemistry A, 2005, 109, 3506-3516.
M. Işık, D. T. Sponza, Journal of International Environmental Application & Science, 2006, 1, 1-26.
G. C. Santos, C. R. Corso, Water, Air, & Soil Pollution, 2014, 225, 2026.
P. Suwannawong, S. Khammuang, R. Sarnthima, Journal of Biochemical Technology, 2010, 2, 182-186.
W. Hailei, L. Ping, L. Guosheng, L. Xin, Y. Jianming, Enzyme and Microbial Technology, 2010, 47, 37-43.
C. I. Pearce, R. Christie, C. Boothman, H. von Canstein, J. T. Guthrie, J. R. Lloyd, Biotechnology and bioengineering, 2006, 95, 692-703.
A. Assadi, R. Nateghi, G. R. Bonyadinejad, M. M. Amin, International Journal of Environmental Health Engineering, 2012, 1, 1-5.
I. Gültekin, G. Tezcanli-Güyer, N. H. Ince, Ultrasonics sonochemistry, 2009, 16, 577-581.
N. H. Ince, G. Tezcanlı́, Dyes and Pigments, 2001, 49, 145-153.
Z. Eren, N. H. Ince, F. N. Acar, Journal of Advanced Oxidation Technologies, 2010, 13, 206-211.
G. Tezcanli-Güyer, N. H. Ince, Ultrasonics, 2004, 42, 603-609.
M. Q. Cai, X. Q. Wei, Z. J. Song, M. C. Jin, Ultrasonics sonochemistry, 2015, 22, 167-173.
S. K. Sharma, “Green Chemistry for dyes removal from waste water: research trends and applications”., John Wiley & Sons, 2015.
L.-H. Ahlström, C. S. Eskilsson, E. Björklund, Trends in Analytical Chemistry, 2005, 24, 49-56.
M. Cai, M. Jin, L. K. Weavers, Ultrasonics sonochemistry, 2011, 18, 1068-1076.
B. P. Vellanki, B. Batchelor, A. Abdel-Wahab, Environmental engineering science, 2013, 30, 264-271.
A. H. Gemeay, Dyes and pigments, 2002, 54, 201-212.
M. de la Guardia, S. Garrigues, “Handbook of green analytical chemistry”. 1st ed., John Wiley & Sons, Pondicherry, 2012.
N. H. Ince, G. Tezcanli-Güyer, Ultrasonics, 2004, 42, 591-596.
A. S. Özen, V. Aviyente, R. A. Klein, The Journal of Physical Chemistry A, 2003, 107, 4898-4907.
J. Oakes, P. Gratton, Journal of the Chemical Society, Perkin Transactions 2, 1998, 1857-1864.
R. Singla, F. Grieser, M. Ashokkumar, Ultrasonics sonochemistry, 2009, 16, 28-34.
J. Mendham, R. Denney, J. Barnes, M. Thomas, “Vogel's Quantitative Chemical Analysis”, Pearson Education Ltd., Singapore, 2000, pp. 768-769.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.