COMPLEXATION OF DNA WITH CATIONIC POLYMERS
DOI:
https://doi.org/10.24193/subbchem.2018.2.15Keywords:
polyethlenimine, cationic polymers, molecular dynamics simulations, PEI/DNA polyplexes, gene delivery systemsAbstract
Polyethylenimine (PEI) represents the most extensively used non-viral vector for gene delivery. The complexation between nucleic acids and PEI chains is intimately related to electrostatic interactions of the positively charged amine groups with the negatively charged phosphate groups. All-atom molecular dynamics simulations of alternatively protonated PEI chains, DNA and, respectively, polyplexes thereof in solution were performed. Our results reveal an increase in gyration radius of solvated PEI chains in the presence of DNA. To understand the major changes in DNA properties, the impact of PEI chains on the ionic environment of DNA is described in detail. In addition, the amine-phosphate contact analysis provides valuable insight into the formation mechanism of PEI/DNA complexes.
References
S. Y. Wong, J. M. Pelet, and D. Putnam, Progress in Polymer Science, 2007, 32, 799.
C. P. Lollo, M. G. Banaszczyk, and H. C. Chiou, Current opinion in molecular therapeutics, 2000, 2, 136.
Y. Zhang, A. Satterlee, and L. Huang, Molecular Therapy, 2012, 20, 1298.
K. Utsuno, H. Uludag, Biophysical Journal, 2010, 99, 201.
J. D. Ziebarth, Y. Wang, Biomacromolecules, 2010, 11, 29.
C. B. Sun, T. Tang, H. Uludag, and J. E. Cuervo, Biophysical Journal, 2011, 100, 2754.
J. D. Ziebarth, D. Kennetz, N. J. Walker, Y. Wang, The Journal of Physical Chemistry B, 2017, 121(8), 1941.
J. Wang, P. Cieplak, P. A. Kollman, Journal of Computational Chemistry, 2000, 25, 1049.
D. A. Case, J. T. Berryman, R. M. Betz, D. S. Cerutti, T. E. Cheatham III, T.A. Darden, R.E. Duke, T.J. Giese, H. Gohlke, A.W. Goetz, N. Homeyer, S. Izadi, P. Janowski, J. Kaus, A. Kovalenko, T. S. Lee, S. LeGrand, P. Li, T. Luchko, R. Luo, B. Madej, K. M. Merz, G. Monard, P. Needham, H. Nguyen, H. T. Nguyen, I. Omelyan, A. Onufriev, D. R. Roe, A. Roitberg, R. Salomon-Ferrer, C. L. Simmerling, W. Smith, J. Swails, R. C. Walker, J. Wang, R. M. Wolf, X. Wu, D. M. York, and P. A. Kollman, AMBER 2015, University of California, San Francisco, 2015.
W. Humphrey, A. Dalke, and K. Schulten, Journal of Molecular Graphics, 1996, 14, 33.
J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, Journal of Computational Chemistry, 2005, 26, 1781.
Foloppe N., MacKerell A. D., Journal of Computational Chemistry, 2000, 21, 86.
Denning E. J., Priyakumar U. D., Nilsson L., Mackerell A. D., Journal of Computational Chemistry, 2011, 32, 1929.
T. A. Beu, A. Farcas, Journal of Computational Chemistry, 2017, 38(27), 2335.
J. P. Ryckaert, G. Ciccotti, H. J. C. Berendsen., Journal of Computational Physics, 1977, 23, 327.
S. Miyamoto, P. A. Kollman, Journal of Computational Chemistry, 1992, 13, 952.
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, The Journal of Chemical Physics, 1995, 103, 8577.
T.A. Beu, A. Farcaş, AIP Conference Proceedings, 2017, 1916, UNSP 020001.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.