IN VITRO TESTING OF A POLYLACTIC POLYMER SYNTHESIZED FROM WHEY
DOI:
https://doi.org/10.24193/subbchem.2018.2.09Keywords:
whey, polylactic acid, cytotoxicity, biocompatibility, eco-friendlyAbstract
The main purpose of this research is in vitro biocompatibility testing of a polylactic acid polymer (PLA) synthesized by the condensation of lactic acid separated from whey (Zonar). The experimental PLA obtained was characterized by: Scanning Electron Microscopy which pointed a homogeneous microstructure of the polymer without a separation phase and differential scanning calorimetry (DSC) analysis which indicated a melting point of 1740C of the biomaterial. The cytotoxicity test for experimentally obtained polymer was performed according to ISO 10 993 -123. Six solutions of different concentrations were prepared (30 mg/ml, 20 mg/ml, 10 mg/ml, 5 mg/ml, 2.5 mg/ml and 1.25 mg/ml) and were tested on a fibroblast culture at 48 hours using MTT cell viability and proliferation assay. At 48h the obtained polylactic polymer showed good compatibility with an IC 50 of 64.82 mg/ml. The results showed that the cytotoxicity level can be influenced by the period of time in which the extract acts on the cell culture.
References
P.M.R. Guimarães, J.A. Teixeira, L. Domingues, Biotechnology Advances, 2010, 28, 375.
www.wheyeurope.com
C. Spalatelu, Innovative Romanian Food Biotechnology, 2012, 10, 1-8.
P.S. Panesar, J.F. Kennedy, D.N. Gandhi, K. Bunko, Food Chemistry, 2007, 105, 1.
S. Maslanka, M. Siolek, L. Hamryszak, D. Lopot, Chemik, 2014, 68(8), 703.
S. Maslanka, A. Kos, M. Bankzyk, I. Kzopek, L. Adam, Chemik, 2015, 69(4), 241.
L. Xiao, B. Wang, G. Yang, M. Guthier, Biomedical Science, Engineering and Technology, 2012, 11, 248.
R.E. Drumright, P.R. Gruber, D.E. Henton, Advanced materials, 2000, 12(23), 1841.
S.M. Davachi, B. Kaffashi, Polymer-Plastics Technology and Engineering, 2015, 54(9), 944.
M.S. Lopez, A.L. Jardini, R. Maciel Filho, Procedia Engineering, 2012, 42, 1402.
A.J.R. Lasprilla, G.A.R. Martinez, B.H. Lunelli, J.E.J. Figueroa, A.L. Jardini, R.M. Filho, Chemical Engineering, 2011.
L.T. Lima, R. Auras, M. Rubino, Progres in Polymer Science, 2008, 33, 820.
D. Garlotta, Journal of Polymers and the Environment, 2001, 9(2), 63.
S. Farah, D.G. Anderson, R. Langer, Advanced Drug Delivery Reviews, 2016, 2.
V.S. Giita Silverajah, A.I. Nor, Z. Norhazlin, Y. Wan Md Zin Wan, A.H. Hazimah, Molecules, 2012, 17, 11729.
S. Shi, X.H. Wang, M. Fan, M.J. Huang, Z.Y. Qian, International Journal of Nanomedicine, 2010, 5, 1049.
S. Zhou, X. Deng, X. Li, W. Jia, L. Liu, Journal of Applied Polymer Science, 2004, 91, 1848.
A. Basarkar, D. Devineni, R. Palaniappan, J. Singh, International Journal of Pharmaceutics, 2007, 343, 247.
R. Auras, B. Harte, S. Selke, Macromolecular Bioscience, 2004, 4, 835.
T.M. Quynh, H. Mitomo, M. Yoneyama, N.Q. Hien, Polymer Engineering and Science, 2009, 49(5), 970.
J. Palacio, V.H. Orozoco, B.L. Lopez, Journal of Brazilian Chemical Society, 2011, 22(12), 2304.
www.tainstruments.com
M. Silindir, A.Y.Ozer, Fabad Journal of Pharmaceutical Sciences, 2009, 34, 43.
G. Vergnol, N. Ginsac, P. Rivory, S. Meille, J.M. Chenal, S. Balvay, J. Chevalier, D.J. Hartmann, Journal of Biomedical Materials Research Part B, 2015, 00B:000-000.
G. Ciapetti, E. Cenni, L. Pratelli, A. Pizzoferrato, Biomaterials, 1993, 14(5), 359.
L.S. Desai, L. Lister, Toxikon Advancing your innovation, 1-19 www.toxikon.com
USP 40, 61, 1-7
International Organization for Standardization, ISO 10993-5, 2009, 1-34.
International Organization for Standardization, ISO 10993-12, 2004, 1-20.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.