COVALENT IMMOBILIZATION OF LIPASES ON ACTIVATED HOLLOW SILICA MICROSPHERES

Authors

  • Bianka SZOKOL Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary. Corresponding author: jnagy@mail.bme.hu.
  • Gábor HORNYÁNSZKY SynBiocat Ltd, Budapest, Hungary. Corresponding author: jnagy@mail.bme.hu. https://orcid.org/0000-0001-7895-9711
  • József NAGY Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary. Corresponding author: jnagy@mail.bme.hu. https://orcid.org/0000-0002-4971-3453

DOI:

https://doi.org/10.24193/subbchem.2019.2.06

Keywords:

hollow silica microspheres, bisepoxide surface activation, kinetic resolution, lipase, immobilization

Abstract

This study explores the covalent immobilization of three lipases (Lipase AK, from Pseudomonas fluorescens; Lipase PS, from Burkholderia cepacia; and CrL, from Candida rugosa) on four supports prepared by functionalization of mesoporous hollow silica microspheres (M540) with various bisepoxides as activating agents for production of novel lipase biocatalysts for enantiomer selective biotransformations of secondary alcohols. The influence of length, rigidity and hydrophobicity of the bisepoxide activating agents was investigated on the efficiency of immobilization and catalytic properties of the resulted twelve lipase biocatalysts. The hollow silica particles modified with the most beneficial bisepoxide activating agents resulted in novel biocatalysts capable for kinetic resolution of racemic 1-phenylethanol rac-1a and racemic octan-2-ol rac-1b with high activity and enantioselectivity.

References

W.Aehle, Enzymes in Industry, 3rd ed., Wiley‐VCH, Weinheim, Germany, 2007, 99.

K. Drauz, H. Gro, Enzyme Catalysis in Organic Synthesis, 3rd ed., Wiley‐VCH, Weinheim, Germany, 2012, 14.

P. Falus, Z. Boros; P. Kovács, L. Poppe, J .Nagy, Journal of Flow Chemistry, 2014, 4, 125.

M. Oláh, Z. Boros, G.Hornyánszky, L. Poppe, Tetrahedron, 2016, 72, 7249.

D. Weiser, A. Varga, K. Kovács, F. Nagy, A. Szilágyi, B.G. Vértessy, C. Paizs, L. Poppe, ChemCatChem 2014, 6, 1463.

S. Hama, H. Noda, A. Kondo, Current Opinion in Biotechnology, 2018, 50, 57.

S.V. Pawar, G.D. Yadav, Journal of Industrial and Engineering Chemistry, 2015, 31, 335.

E.P. Cipolatti, E.A. Manoel, R. Fernandez-Lafuente, D.M.G. Freire, Biotechnology Research and Innovation, 2017, 1, 26.

Q. Cai, C.Hu, N. Yang, Q. Wang, J. Wang, H. Pan, Y. Hu, C. Ruan, International Journal of Biological Macromolecules, 2018, 109, 1174.

M. Babaki, M. Yousefi, Z. Habibi, J. Brask, M. Mohammadi, Biochemical Engineering Journal, 2015, 101, 23.

I.M. Ferreira, R.H.V. Nishimura, A.B.D. A Souza, G.C. Clososki, S.A. Yoshioka, A. L. M. Porto, Tetrahedron Letters, 2014, 55, 5062.

A. Fabry-Wood, M.E. Fetrow, C.W. Brown, N.A. Baker, N. Fernandez Oropeza, A.P. Shreve, G.A. Montaño, D. Stefanovic, M.R. Lakin, S.W. Graves, ACS Applied Materials and Interfaces, 2017, 9, 30185.

S. Gihaz, D. Weiser, A. Dror, P. Sátorhelyi, M. Jerabek-Willemsen, L. Poppe, A. Fishman, ChemSusChem, 2016, 9, 3161.

M.V.M. Silva, J.F. Bassut, I.I. Junior, S.P. de Souza, M.L.G. Estrada, L.S.M. Miranda, R.O.M.A. de Souza, RSC Advances, 2015, 5, 102409.

X.N. Yang, X.B. Huang, R.Q. Hang, X.Y. Zhang, L. Qin, B. Tang, Journal of Materials Science, 2016, 51, 6428.

R.A. Meryam Sardar, Biochemistry & Analytical Biochemistry, 2015, 4, 1.

D. Weiser, P. L.Sóti, G. Bánóczi, V. Bódai, B. Kiss, Á. Gellért, Z. K. Nagy, B. Koczka, A. Szilágyi, G. Marosi, L. Poppe, Tetrahedron, 2016, 72, 7335.

N. Rueda, J.C.S. dos Santos, R. Torres, O. Barbosa, C. Ortiz, R. Fernandez-Lafuente, RSC Advances, 2015, 5, 55588.

D. Weiser, F. Nagy, G. Bánóczi, M. Oláh, A. Farkas, A. Szilágyi, K. László, Á. Gellért, G. Marosi, S. Kemény, L. Poppe, Green Chemistry, 2017, 19, 3927.

Z. Gao, J. Chu, T. Jiang, T. Xu, B. Wu, B. He, Process Biochemistry, 2018, 64, 152.

.J. Agustian, A.H. Kamaruddin, H.Y. Aboul-Enein, Chirality 2017, 29, 376.

Z. Zhou, F. Piepenbreier, V.R.R.Marthala, K. Karbacher, M. Hartmann, Catalysis Today, 2015, 243, 173.

Y.T. Zhu, X.Y. Ren, Y.M. Liu, Y. Wei, L. Qing, Liao, X. Sen, Materials Science and Engineering C, 2014, 38 , 278.

C. Hou, H. Zhu, Y. Li, X. Wang, W. Zhu, R. Zhou, Applied Microbiology and Biotechnology 2014, 99, 1249.

B. Nagy, Z. Galla, L.C. Bencze, M.I. Toșa, C. Paizs, E. Forró, F. Fülöp, European Journal of Organic Chemistry, 2017, 2017, 2878.

A. Suescun, N. Rueda, J.C.S. Dos Santos, J.J. Castillo, C. Ortiz, R. Torres, O. Barbosa, R. Fernandez-Lafuente, Process Biochemistry, 2015, 50, 1211.

L. Nagy-Győr, Z. Boros, L. Poppe, Periodica Polytechnica Chemical Engineering, 2013, 57, 37.

E. Abaházi, D. Lestál, Z. Boros, L. Poppe, Molecules, 2016, 21, 767.

D. Weiser, Z. Boros, J. Nagy, G. Hornyánszky, E. Bell, P. Sátorhelyi, L. Poppe, Biocatalysis: An Industrial Perspective; Catalysis series no 29. Royal Society of Chemistry, Cambridge, United Kingdom, 2018, 397.

F. Nagy, K. Szabó, P. Bugovics, G. Hornyánszky, Periodica Polytechnica Chemical Engineering, 2019, 1.

M. Oláh, S. Suba, Z.Boros, P. Kovács, M. Gosselin, C. Gaudreault, G. Hornyánszky, Periodica Polytechnica Chemical Engineering, 2018, 62, 519.

Downloads

Published

2019-06-03

How to Cite

SZOKOL, B. ., HORNYÁNSZKY, G. ., & NAGY, J. . (2019). COVALENT IMMOBILIZATION OF LIPASES ON ACTIVATED HOLLOW SILICA MICROSPHERES. Studia Universitatis Babeș-Bolyai Chemia, 64(2), 69–78. https://doi.org/10.24193/subbchem.2019.2.06

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.