ASSESSMENT OF VARIOUS WATER-GAS-SHIFT PROCESS CONFIGURATIONS APPLIED TO PARTIAL OXIDATION ENERGY CONVERSION PROCESSES WITH CARBON CAPTURE

Authors

DOI:

https://doi.org/10.24193/subbchem.2019.2.31

Keywords:

Partial oxidation, Water-gas-shift, Carbon capture, Reactive gas-liquid and gas-solid systems

Abstract

The energy conversion systems based on partial oxidation processes (hydrocarbons catalytic reforming, solid fuel gasification) are very promising for integrating carbon capture technologies due to high CO2 partial pressure in syngas to be treated. In these systems, the water-gas-shift (WGS) reaction has a very important place in concentrating the syngas energy as hydrogen and to convert carbon species as CO2. This paper is evaluating various WGS process configurations to be applied in catalytic reforming and gasification designs ranging from the conventional designs (multiple catalytic shift reactors) to more innovative reactive gas-solid systems (chemical & calcium looping) for simultaneous syngas conversion and CO2 capture. As the evaluations show, the reactive gas-solid systems are more promising in reducing energy penalty for CO2 capture as well as to increase the overall energy efficiency and carbon capture rate. As illustrative examples, the coal gasification for hydrogen and power co-generation with carbon capture were assessed.

References

European Commission, “A policy framework for climate and energy in the period from 2020 to 2030”, COM(2014) 15 final, Brussels, Belgium, 2014.

B. Metz, O. Davidson, H. de Coninck, M. Loos, L. Meyer, “Carbon Dioxide Capture and Storage”, Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland, 2005.

A. M. Cormos, C. Dinca, C. C. Cormos, Applied Thermal Engineering, 2015, 74, 20.

R. Segurado, S. Pereira, D. Correia, M. Costa, Renewable and Sustainable Energy Reviews, 2019, 103, 501.

T. A. Adams, P. I. Barton, Fuel Processing Technology, 2011, 92, Issue 3, 639.

A. I. Papadopoulos, P. Seferlis, “Process systems and materials for CO2 capture - Modelling, design, control and integration”, John Wiley & Sons Ltd., 2017, chapter 11.

S. Saeidi, F. Fazlollahi, S. Najari, D. Iranshahi, J. J. Klemeš, L. Baxter, Journal of Industrial and Engineering Chemistry, 2017, 49, 1.

K. Liu, C. Song, V. Subramani, “Hydrogen and syngas production and purification technologies”, AIChE - Wiley, Inc., 2010, chapter 6.

C. C. Cormos, A. M. Cormos, L. Petrescu, Chemical Engineering Research and Design, 2014, 92, 741.

L. S. Fan, “Chemical looping systems for fossil energy conversions”, AIChE - Wiley, Inc. 2010, chapter 1.

C. Higman, M. van der Burgt, “Gasification”, second ed., Gulf Professional Publishing, Elsevier Science, 2008.

B. Shi, W. Xu, E. Wu, W. Wu, P. C. Kuo, Journal of Cleaner Production, 2018, 195, 176.

C. C. Cormos, Energy, 2012, 42, 434.

International Energy Agency - Greenhouse gas R&D programme (IEAGHG), “Potential for improvement in gasification combined cycle power generation with CO2 capture”, Report PH4/19, Cheltenham, UK, 2003.

W. Wu, F. Wen, J. R. Chen, P. C. Kuo, B. Shi, Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 193.

D. P. Hanak, S. Michalski, V. Manovic, Energy Conversion and Management, 2018, 177, 428.

U. Ahmed, U. Zahid, Y. Lee, International Journal of Hydrogen Energy, 2019, 44, 7137.

A. M. Cormos, C. C. Cormos, International Journal of Hydrogen Energy, 2014, 39, 2067.

W. Xu, B. Shi, W. Wu, Energy Procedia, 2018, 152, 1248.

J. A. R. Diamante, R. Tan, D. C..Y. Foo, D. K. S. Ng, K. B. Aviso, S. Bandyopadhyay, Journal of Cleaner Production, 2014, 71, 67.

A. M. Cormos, C. Dinca, L. Petrescu, D. A. Chisalita, S. Szima, C.C. Cormos, Fuel, 2018, 211, 883.

National Energy Technology Laboratory (NETL), “Cost and performance baseline for fossil energy plants - Volume 1: Bituminous coal and natural gas to electricity”, Report 2010/1397, Albany, USA, 2010.

A. Zohrabian, M. M. Majoumerd, M. Soltanieh, S. Sattari, International Journal of Greenhouse Gas Control, 2016, 44, 94.

M. van der Spek, S. Roussanaly, E. S. Rubin, International Journal of Greenhouse Gas Control, 2019, 83, 91.

A. M. Cormos, C. C. Cormos, Applied Thermal Engineering, 2019, 147, 29.

A. Chapman, K. Itaoka, K. Hirose, F. T. Davidson, K. Nagasawa, A. C. Lloyd, M. E. Webber, Z. Kurban, S. Managi, T. Tamaki, M. C. Lewis, R. E. Hebner, Y. Fujii, International Journal of Hydrogen Energy, 2019, 44, 6371.

A. Ozawa, Y. Kudoh, A. Murata, T. Honda, I. Saita, H. Takagi, International Journal of Hydrogen Energy, 2018, 43, 18083.

Downloads

Published

2019-06-28

How to Cite

SANDU, V.-C. ., CORMOS, C.-C. ., & CORMOȘ, A.-M. . (2019). ASSESSMENT OF VARIOUS WATER-GAS-SHIFT PROCESS CONFIGURATIONS APPLIED TO PARTIAL OXIDATION ENERGY CONVERSION PROCESSES WITH CARBON CAPTURE. Studia Universitatis Babeș-Bolyai Chemia, 64(2), 371–381. https://doi.org/10.24193/subbchem.2019.2.31

Issue

Section

Articles

Similar Articles

<< < 29 30 31 32 33 34 35 36 > >> 

You may also start an advanced similarity search for this article.