ULTRAVIOLET-VISIBLE (UV-VIS) SPECTROSCOPY AND CLUSTER ANALYSIS AS A RAPID TOOL FOR CLASSIFICATION OF MEDICINAL PLANTS

Authors

  • Simona Codruța Aurora COBZAC Faculty of Chemistry and Chemical Engineering; Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics – ANALYTICA, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: csimona@chem.ubbcluj.ro. https://orcid.org/0000-0002-8968-3893
  • Dorina CASONI Faculty of Chemistry and Chemical Engineering; Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics – ANALYTICA, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: dorina.casoni@ubbcluj.ro. https://orcid.org/0000-0002-7056-8000
  • Mihaela BADEA Faculty of Medicine, Transilvania University, Brasov, Romania. Email: mihaela.badea@unitbv.ro. https://orcid.org/0000-0003-4824-2175
  • Biljana BALABANOVA Department of Soil Chemistry and Hydrology, Faculty of Agriculture, Goce Delcev University, Stip, Republic of North Macedonia. Corresponding author: csimona@chem.ubbcluj.ro. https://orcid.org/0000-0002-9530-3674
  • Natalija MARKOVA RUZDIK Department of Plant Production, Faculty of Agriculture, Goce Delcev University, Stip, Republic of North Macedonia. Corresponding author: csimona@chem.ubbcluj.ro. https://orcid.org/0000-0003-1465-2512

DOI:

https://doi.org/10.24193/subbchem.2019.4.14

Keywords:

medicinal plants, classification/identification, UV-Vis spectroscopy, cluster analysis

Abstract

The ultraviolet-visible (UV-Vis) spectroscopy coupled with cluster analysis (CA) was evaluated for the classification of some medicinal plants of different geographical growing area. To have a deeper view, the experiment was carried out on herbs belonging to different families. The UV-Vis spectra of hydroalcoholic extracts were acquired in the range of 200-800 nm. The hierarchical clustering analysis (HCA) was applied to the data matrix provided by unprocessed, normalized and standardized spectra respectively. Different types of distance measuring of (dis)similarity between the samples as well as different kinds of linkage or amalgamation rule were taken into account. The best results for the classification of the selected medicinal plants were obtained using Ward’s method as the amalgamation rule combined with 1-Pearson r clustering distance measurement. The obtained results reveal the ability of HCA with Ward and 1-Pearson r algorithm to identify plant species even when the raw material has different provenience areas and different pedoclimatic growing conditions. In addition, this methodology revealed a direct link between herbs from different families.

References

WHO; WHO Guidelines on Good Agricultural and Collection Practices (GACP), 2003.

WHO; Traditional Medicine. Growing Needs and Potential. WHO Policy Perspective on Medicine. WHO, Geneva, 2002.

A. Gurib-Fakim; Mol. Aspects Med., 2006, 27, 1-93.

O.Y. Rodionova; A.V. Titova; A.L. Polmerantsev; Trends Anal. Chem., 2016, 78, 17-22.

M. Forina; P. Oliveri; S. Lanteri; M. Casale; Chemom. Intell. Lab. Syst., 2008, 93, 132-148.

Y. Wei; W. Fan; X. Zhao; W. Wu; H. Lu; Anal. Lett., 2015, 48, 817-829.

Z. Cao; Z. Wang; Z. Shang; J. Zhao; PLOS ONE, 2017, 1-14.

H.A. Gad; S.H. El-Ahmady; M.I. Abou-Shoer; M.M. Al-Azizi; Phytochem. Anal., 2013, 24, 1-24.

I.M. Simion; C. Sârbu; Spectrochim. Acta A: Mol.Biomol.Spectroscopy, 2019, Accepted manuscript, http://doi.org.10.1016/j.saa.2019.04.038.

J. Fibigr; D. Satinsky; P. Solich; Anal. Chim. Acta, 2018, 1036, 1-15.

S.S. Chavan; V.M. Jadhav; V.J. Kadam; Int. J. Pharm. Sci. Rev. Res., 2017, 43, 161-168.

X. Zhang; J. Zhang; S. Zhang; Z. Qian; S. Wu; J. Liu; Y. Ye; J. Si; Ind. Crops Prod., 2018, 124, 707-718.

G. Alvarez-Rivera; D. Ballesteros-Vivas; F. Parada-Alfonso; E. Ibañez; A. Cifuentes; Trend. Anal. Chem. 2019, 112, 87-101.

M. Simion; D. Casoni; C. Sarbu; J. Pharm. Biomed. Anal. 2019, 163, 137-143.

C. Cheng; J. Liu, W; Cao, R. Zheng; H, Wang; C. Zhang; Vib. Spectrosc., 2010, 54, 50-55.

T. Hu; W.Y. Jin; C.G. Cheng; Spectroscopy, 2011, 25, 271-285.

A. Dankowska; W. Kowalewski; Spectrochim. Acta A, Mol. Biomol. Spectroscopy, 2019, 211, 195-202.

D.D. Joshi; Herbal Drugs and Fingerprints. In UV-Vis Spectroscopy: Herbal Drugs and Fingerprints, Springer, New Delhi Heidelberg, 2012, Chapter 6, pp 101-105.

L.A. Berrueta; R.M. Alonso-Salces; K. Heberger; J. Chromatogr. A, 2007, 1158, 196-214.

J. Moros; Trends Anal. Chem. 2010, 29, 578-591.

S.M. Dhivya; K. Kalaichelvi; Int. J. Curr. Pharm. Res., 2017, 9, 46-49.

K. Kalaichelvi; S. M. Dhivya; Int. J. Herb. Med., 2017, 5, 40-44.

D. Jing; W. Deguang; H. Linfang; C. Shilin; Q. Minjian; J. Med. Plants Res., 2011, 5, 4001-4008.

V. Matevski; Flora of the Republic of Macedonia, 1st Edition, Macedonian Academy of Science and Arts, Skopje, 2010 (in Macedonian).

A. Rinnan; F.W.J. van den Berg; S.B. Engelsen; Trends Anal. Chem., 2009, 28, 1201-1222.

Downloads

Published

2019-12-30

How to Cite

COBZAC, S. C. A. ., CASONI, D. ., BADEA, M. ., BALABANOVA, B. ., & MARKOVA RUZDIK, N. . (2019). ULTRAVIOLET-VISIBLE (UV-VIS) SPECTROSCOPY AND CLUSTER ANALYSIS AS A RAPID TOOL FOR CLASSIFICATION OF MEDICINAL PLANTS. Studia Universitatis Babeș-Bolyai Chemia, 64(4), 191–203. https://doi.org/10.24193/subbchem.2019.4.14

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>