SURFACE CHARACTERIZATION AND CYTOTOXICITY ANALYSIS OF THE TITANIUM ALLOYS FOR DENTISTRY
DOI:
https://doi.org/10.24193/subbchem.2020.1.12Keywords:
Ti-6Al-4V surface treatment, electrochemical processing, dental implant, cytotoxicity, SEM.Abstract
Three methods of treating the Ti and Ti-6Al-4V alloy surface used as dental implants have been tried both to increase the corrosion resistance and to create diffusion barriers, which prevent the release of toxic ions in the body, at the separation surface, implant living tissue. The anticorrosive performances of the experimental oxide films, realized on the pure Ti and Ti-6Al-4V alloy were evaluated electrochemically by cyclic voltammetry after immersion of samples in Ringer’s solution at 37°C. The A2-Ti sample (Ti-6Al-4V alloy anodized with H3PO4, 1N, and citric acid, 20 g/l electrolyte solution) shows lower viability values, compared to the other samples, with a tendency to decrease after 48h of incubation. The cytotoxic effect is slightly higher in A1-Ti (Ti-6Al-4V alloy anodized with 0.6% H3PO4 electrolyte solution) compared to Ti over a period. This can be attributed to the presence of aluminium and vanadium. The results revealed that the specific processing of titanium and titanium alloy (Ti-6Al-4V) by obtaining an oxide layer influence the toxicity that is stabilize and decrease with time, which makes to be used in dental implantology.
References
D. Bunea, A. Nocivin, Materiale biocompatibile, Ed. BREN, Bucuresti, 1998, pp. 65-74.
M. Kulkarni, A. Mazare, P. Schmuki, A. Iglič, Biomaterial surface modification of titanium and titanium alloys for medical applications, in Nanomedicine, One Central Press, United Kingdom, 2014, Chapter 5, pp. 111-136.
V. Antoniac, O. Trante, C. Trante, Materiale biocompatibile utilizate la realizarea implanturilor ortopedice, in Buletin Ştiinţific–Conferinţa Naţională de Ştiinţa şi Ingineria Materialelor, BRAMAT’99, 1999, vol. I, ISBN 973-98797-0-5, pp.270-273.
D. Leordean, S. A. Radu, D. Fratila, P. Berce, Int. J. Adv. Manuf. Tech., 2015, 79, 905-920.
M. Bruschi, D. Steinmüller-Nethl, W. Goriwoda, M. Rasse, J. Oral Implantol, 2015, 527426, http://dx.doi.org/10.1155/2015/527426.
A.V. Burde, S. Cuc, A. Radu, M.A. Rusu, C.S. Cosma, D. Leordean, Studia UBB Chemia, 2016, 61, 205-214.
C. Cosma, N. Balc, M. Moldovan, L. Morovic, P. Gogola, C. Miron-Borzan, J. Optoelectron. Adv. M., 2017, 19, 738-747.
S. L. Assis, S. Wolynec, I. Costa, Eletrochim. Acta, 2006, 51, 1815-1819.
T. Chaturvedi T. Indian J. Dent. Res., 2009, 20, 91-98.
M. Nica, B. Cretu, D. Ene, I. Antoniac, D. Gheorghita, R. Ene, Materials 2020, 13, 1201; doi:10.3390/ma13051201
T.D. Morgan, M. Wilson, J. Appl. Microbiol., 2001, 91, 47-53.
M. Hajisafari. A. Z. Bidaki, S. Yazdani, Adv. Mater. Process., 2017, 3, 12-22.
S. Cavalu, I. V. Antoniac, L. Fritea, I. M. Mates, C. Milea, V. Laslo, S. Vicas, A. Mohan, J. Adhes. Sci. Technol., 2018, 32, 2509-2522.
O. H. Orasan, A. M. Chisnoiu, M. L. Dascalu (Rusu), O. Pastrav, M. Pastrav, M. Moldovan, R. Chisnoiu, Studia UBB Chemia, 2017, 3, 215-223.
V.A. Barão, M.T. Mathew, W.G. Assunção, J. C. Yuan, M. A. Wimmer, C. Sukotijo, Clin. Oral Implants Res., 2012, 23, 1055-1062.
D. Sucala, C. Sarosi, C. Popa, I. Cojocaru, M. Moldovan, A. G. Mohan, Studia UBB Chemia, 2018, 63, 71-81.
C. Castellani, R. A. Lindtner, P. Hausbrandt, Acta Biomater., 2011,7, 432-440.
I. Antoniac, Fundamental properties of bioceramics and biocomposites, in Handbook of Bioceramics and Biocomposites, Springer International Publishing, 2016, Vol. 1-2, Chapter 1, pp.35-58.
I. Antoniac, C. Sinescu, A. Antoniac, J. Adhes. Sci. Technol., 2016, 30, 1711-1715.
I. Karacan, B. Ben-Nissan, H. A. Wang, A. Juritza, M. V. Swain, W. A. Müller, J. Chou, A. Stamboulis, I. J. Macha, V. Taraschi, Mater. Sci, Eng. C., 2019, 104, 109757.
A. Saplontai-Pop, M. Moldovan, R. Oprean, O. Orasan, S. Saplontai, C. Ionescu, Studia UBB Chemia, 2014, 59, 39-46.
M. Ahmad, D. Gawronski, J. Blum, J. Goldberg, G. Gronowicz, J. Biomed. Mater. Res., 1999, 46, 121-131.
X. Liu, S. Chen, J. K. H. Tsoi, J. P. Matinlinna, Regen. Biomater., 2017, 315. doi: 10.1093/rb/rbx027.
J. Curtin, M. Wang, H. Sun, Int. J. Oral Max. Surg., 2017, 46, 94-99.
A. D. Tinoco, M. Saxena, S. Sharma, J. Am. Chem. Soc., 2016, 138, 5659-5665.
L.Silaghi-Dumitrescu, A. M. Mihailescu, A. Muntean, C. Sarosi, D. Prodan, M. R. Simu, M. Moldovan, A. Kui, M. Pastrav, Studia UBB Chemia, 2019, 4, 107-119.
A. Han, J. K. H. Tsoi, F. P. Rodrigues, Int. J. Adhes. Adhes., 2016, 69, 58-71.
A. Wennerberg, L. M. Svanborg, S. Berner, Clin. Oral Implants Res., 2013, 24, 203-209.
I. M. Hamouda, E. T. Enan, E. E. Al-Wakeel, Int. J. Oral Max. Impl., 2012, 27, 776-784.
Y. T. Sul, C. B. Johansson, Y. Kang, Clin. Implant Dent. R., 2002, 4, 78-87.
H. Tschernitschek, L. Borchers, W. Geurtsen, Quintessence Int., 2005, 36, 523-530.
N. Sykaras, A.M. Iacopino, V. A. Marker, Int. J. Oral Max. Impl., 2000, 15, 675-690.
A. D. Tinoco, M. Saxena, S. Sharma, J. Am. Chem. Soc., 2016, 138, 5659-5665.
A. Saplontai-Pop, A.Mot, M. Moldovan, R. Oprean, R. Silaghi-Dumitrescu, O.H. Orasan, S. Saplontai, M.Parvu, G. Emese C. Ionescu, Open Life Sci., 2015, 10, 89-98.
S. Chandar, R. Kotian, P. Madhyastha, S. P. Kabekkodu, Padmalatha Rao, J. Indian Prosthodont. Soc., 2017, 17, 35-40.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.