THE EFFECT OF HALOGEN SUBSTITUTION ON THE BOWL-TO-BOWL INVERSION, MOLECULAR STRUCTURE AND ELECTRONIC PROPERTIES OF SUMANENE
DOI:
https://doi.org/10.24193/subbchem.2020.2.01Keywords:
Sumanene, Halogens, Bowl-to-bowl inversion, DFTAbstract
Halogen (X: F, Cl, and Br) substituted sumanene derivatives were subjected to a detailed computational study, exploring the molecular structure, bowl-depths, bowl-to-bowl inversion dynamics, and electronic properties. Hybrid density functional (DFT, B3LYP, X3LYP and PBEKCIS) theoretical calculations were performed with an array of basis sets 6-31+G(d,p) and cc-pVTZ. The bowl shaped geometry and other properties were significantly affected by the introduction of halogens (F, Cl, and Br). Especially, the bond length alternations (Δ1 and Δ2) in the hub benzene ring and flank benzene ring of halogenated sumanenes (2Xa, 2Xb, and 12X) show remarkable sensitivity as a function of halogen with a wide range of fluctuations (0.011 to 0.071 Å). The introduction of fluorine to sumanene influences the bowl-to-bowl inversion energies slightly. The size of halogens seems to chiefly control the bowl depth and bowl-to-bowl inversion dynamic. In contrast, the bond length alternations seem to be controlled by electronic factors and not by the size of the substituted halogen atoms. The frontier molecular orbitals (FMOs) and molecular electrostatic potentials (MEPs) were significantly affected by the introduction of halogen atoms.
References
D. Zhou; Y. Gao; B. Liu; Q. Tan; B. Xu; Org. Lett., 2017, 19, 4628-4631.
T. Amaya; H. Sakane; T. Nakata; T. Hirao; Pure Appl. Chem., 2010, 82, 969-978.
N. Ngamsomprasert; G. Panda; S. Higashibayashi; H. Sakurai; J. Org. Chem., 2016, 81, 11978-11981.
T. Amaya; T. Hirao; Chem. Record, 2015, 15, 310-321.
E. Tahmasebi; Z. Biglari; E. Shakerzadeh; Vacuum, 2016, 136, 82-90.
U.D. Priyakumar; G.N. Sastry; J. Phys. Chem., 2001, 105, 4488-4494.
S. Armaković; S.J. Armaković; J.P. Šetrajčić; I.J. Šetrajčić; Chem. Phys. Lett., 2013, 578, 156-161
H. Sakurai; T. Daiko; T. Hirao; Science, 2003, 301, 1878-1878.
H. Sakurai; T. Daiko; H. Sakane; T. Amaya; T. Hirao; J. Am. Chem. Soc. 2005, 127, 11580−11581.
S. Higashibayashi; H. Sakurai; J. Am. Chem. Soc. 2008, 130, 8592−8593.
T. Amaya; S. Seki; T. Moriuchi; K. Nakamoto; T. Nakata; H. Sakane; A. Saeki; S. Tagawa; T. Hirao; J. Am. Chem. Soc. 2009, 131, 408−409.
S. Higashibayashi; S. Onogi; H.K. Srivastava; G.N. Sastry; Y.T. Wu; H. Sakurai; Angew. Chem., Int. Ed. 2013, 52, 7314−7316.
H. Sakane; T. Amaya; T. Moriuchi; T. Hirao; Angew. Chem., Int. Ed. 2009, 48, 1640−1643.
B.B. Shrestha; S. Karanjit; S. Higashibayashi; H. Sakurai; Pure Appl. Chem. 2014, 86, 747−753.
S. Higashibayashi; R. Tsuruoka; Y. Soujanya; U. Purushotham; G.N. Sastry; S. Seki; T. Ishikawa; S. Toyota; H. Sakurai; Bull. Chem. Soc. Jpn. 2012, 85, 450−467.
A. Reisi-Vanani; M. Hamadanian; S. N. Kokhdan; Comput. Theor. Chem., 2016. 1082, 49-57.
T. Amaya; T. Ito; S. Katoh; T. Hirao; Tetrahedron, 2015, 71, 5906-5909.
S. Armaković; S.J. Armaković; J.P. Šetrajčić; Int. J. Hydrog. Energy, 2013, 38, 12190-12198.
A. Reisi-Vanani; S. Bahramian; Comput. Theor. Chem., 2016, 1093, 40-47.
Y. Ma; A.S. Foster; A.V. Krasheninnikov; R.M. Nieminen; Physical Review B, 2005, 72, 205416.
K.P. Prathish; M.M. Barsan; D. Geng; X. Sun; C.M.A. Brett; Electrochimica Acta, 2013, 114, 533.
P. Nath; S. Chowdhury; D. Sanyal; D. Jana; Carbon, 2014, 73, 275.
M. Medeleanua; R. Pop; M. Andoni; STUDIA UBB CHEMIA, 2017, 62(4), 105-119.
S. Armaković; S.J. Armaković; J.P. Šetrajčić; V. Holodkov; J. Mol. Model., 2014, 20, 2538-2551.
X. Chen; F.-Q. Bai; Y. Tang; H.-X. Zhang; J. Comput. Chem., 2016, 37, 813–824.
A. Karton; J. Comput. Chem., 2016, 38, 370-382.
U.D. Priyakumar; G.N. Sastry; J. Org. Chem., 2001, 66, 6523-6530.
Y. Sun; X. Hou; Chinese Chem. Lett., 2016, 27, 1166-1174.
V.M. Geskin; C. Lambert; J.L.Bredas; J. Am. Chem. Soc., 2003, 125, 5651-15658.
D. Sajan; H. Joe; V.S. Jayakumar; J. Zaleski; J. Mol. Str., 2006, 785, 43-53.
A. Rockett; Organic Semiconductors, in The Materials Science of Semiconductors, A. Rockett, Ed.; Springer, Boston, MA, 2008, pp 395-453.
I. Fleming, “Frontier Orbitals and Org. Chemical Reactions”, Wiley, London, 1976.
Y. Tian; W. Chen; Z. Zhao; L. Xu; B. Tong; J. Mol. Model., 2020, 26, 67.
L. Găină, I. Torje, E. Gal, A. Lupan, C. Bischin, R. Silaghi-Dumitrescu, G. Damian, P. Lönnecke, C. Cristea, L. Silaghi-Dumitrescu; Dyes Pigments, 2014, 102, 315.
A. Azizoglu; Struct. Chem., 2003, 14, 575-580.
Z. Ozer, T. Kilic, S. Carikci, A. Azizoglu; Russ. J. Phys. Chem. A, 2019, 93, 2703–2709.
C.B. Yildiz; Z.O. Sagir; T. Kilic; A. Azizoglu; STUDIA UBB CHEMIA, 2014, 59(2), 17-32.
S. Gosav; N. Paduraru; D. Maftei; M.L. Birsa; M. Praisler; Spectrochim. Acta A, 2017, 172, 115-125.
H. Unlu, Solid State Electron, 1992, 35,1343-1352.
D.C. Young; Computational Chemistry. New York, John Wiley & Sons Inc., 2001, pp. 19-92.
R. Dennington; T. Keith; J. Millam; GaussView, 2009, Version 5, Semichem Inc., Shawnee Mission KS.
M.J. Frisch; G.W. Trucks; H.B. Schlegel; G.E. Scuseria; M.A. Robb; J.R. Cheeseman; G. Scalmani; V. Barone; B. Mennucci; G.A. Petersson; H. Nakatsuji; M. Caricato; X. Li; H.P. Hratchian; A.F. Izmaylov; J. Bloino; G. Zheng; J.L. Sonnenberg; M. Hada; M. Ehara; K. Toyota; R. Fukuda; J. Hasegawa; M. Ishida; T. Nakajima; Y. Honda; O. Kitao; H. Nakai; T. Vreven; J.A. Montgomery Jr.; J.E. Peralta; F. Ogliaro; M. Bearpark; J.J. Heyd; E. Brothers; K.N. Kudin; V.N. Staroverov; R. Kobayashi; J. Normand; K. Raghavachari; A. Rendell; J.C. Burant; S.S. Iyengar; J. Tomasi; M. Cossi; N. Rega; J.M. Millam; M. Klene; J.E. Knox; J.B. Cross; V. Bakken; C. Adamo; J. Jaramillo; R. Gomperts; R.E. Stratmann; O. Yazyev; A.J. Austin; R. Cammi; C. Pomelli; J.W. Ochterski; R.L. Martin; K. Morokuma; V.G. Zakrzewski; G.A. Voth; P. Salvador; J.J. Dannenberg; S. Dapprich; A.D. Daniels; Ö. Farkas; J.B. Foresman; J.V. Ortiz; J. Cioslowski; D.J. Fox; Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
I.-T. Moraru, G. Nemes, STUDIA UBB CHEMIA, 2019, 64(2), 435-446.
A.A. Attia; R.S. ‐Dumitrescu; Int. J. Quant. Chem., 2014, 114, 652-665.
N. Azizoglu; M. Alkan; Ö. Geban; J. Chem. Educ., 2006, 83, 947-953.
A. Azizoglu; R. Ozen; T. Hokelek; M. Balci; J. Org. Chem., 2004, 69, 1202-1206.
C. Gonzalez; H.B. Schlegel; J. Phys. Chem., 1990, 94, 5523-5527.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.