CHEMICALLY MODIFIED CHITOSAN COATINGS: WETTING AND ELECTROCHEMICAL STUDIES

Authors

  • Péter MÁRTON Department of Physical Chemistry and Materials Science, Centre for Colloid Chemistry, Faculty of Chemical Technology and Biotechnology, University of Technology and Economics, Budapest, Hungary. Corresponding author: gszabo@chem.ubbcluj.ro.
  • Emőke ALBERT Department of Physical Chemistry and Materials Science, Centre for Colloid Chemistry, Faculty of Chemical Technology and Biotechnology, University of Technology and Economics, Budapest, Hungary. Corresponding author: gszabo@chem.ubbcluj.ro.
  • Norbert NAGY Centre for Energy Research, Institute for Technical Physics and Materials Science, Budapest, Hungary. Corresponding author: gszabo@chem.ubbcluj.ro. https://orcid.org/0000-0002-9548-9982
  • Borbála TEGZE Department of Physical Chemistry and Materials Science, Centre for Colloid Chemistry, Faculty of Chemical Technology and Biotechnology, University of Technology and Economics, Budapest, Hungary. Corresponding author: gszabo@chem.ubbcluj.ro.
  • Gabriella Stefánia SZABÓ Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: gszabo@chem.ubbcluj.ro. https://orcid.org/0000-0002-7083-9106
  • Zoltán HÓRVÖLGYI Department of Physical Chemistry and Materials Science, Centre for Colloid Chemistry, Faculty of Chemical Technology and Biotechnology, University of Technology and Economics, Budapest, Hungary. Email: zhorvolgyi@mail.bme.hu. https://orcid.org/0000-0002-8512-1682

DOI:

https://doi.org/10.24193/subbchem.2020.3.05

Keywords:

chitosan coating, contact angles, electrochemical measurements

Abstract

Native chitosan coatings were prepared on glass and zinc substrates by dip-coating method. The native coatings were chemically modified: crosslinked with glutaraldehyde and sodium-tripolyphosphate and then silylated with dichlorodimethylsilane. The native layers prepared on zinc substrate were acylated with acetic anhydride and impregnated with indigo carmine (IC). Native coatings on different substrates showed different morphology and physical structure, which were explored by AFM studies. Examining the wetting properties of the coatings, it was found that the chemical modification can form a stable, hydrophobic (advancing contact angle of ca. 97°) and water repellent (HΘ = 2°) layer on the glass substrate, while the same modifications reduce the hydrophobic nature and stability of the coating on zinc (contact angle decreases from ca. 100° to ca. 60°). Electrochemical studies of the coatings have shown that IC increases the corrosion protection (>90% inhibition efficiency) and reduces the permeability of the coating through ionic crosslinking, while acylation has the opposite effect and the acylated coating protection is worse than the native chitosan. The results can be used in the development of hydrophobic, water-repellent and temporary anti-corrosion coatings.

References

Z. Sebestyén, E. Jakab, A. Domán, P. Bokrossy, I. Bertóti, J. Madarász, K. László, J. Therm. Anal. Calorim. 2020, 1-8.

B. Duan, Y. Huang, A. Lu, L. Zhang, Prog. Polym. Sci. 2018, 82, 1–33.

S. Kumari, S.H. Kumar Annamareddy, S. Abanti, P. Kumar Rath, Int. J. Biol. Macromol. 2017, 104 1697–1705.

S. Tripathi, G.K. Mehrotra, P.K. Dutta, Int. J. Biol. Macromol. 2009, 45, 372–376.

T. Dai, M. Tanaka, Y.Y. Huang, M.R. Hamblin, Expert Rev. Anti. Infect. Ther. 2011, 9 857–879.

P.L. Kashyap, X. Xiang, P. Heiden, Int. J. Biol. Macromol. 2015, 77, 36–51

T. V. Podust, T. V. Kulik, B.B. Palyanytsya, V.M. Gun’Ko, A. Tóth, L. Mikhalovska, A. Menyhárd, K. László, Appl. Surf. Sci. 2014, 320, 563–569.

M. Dabóczi, E. Albert, E. Agócs, M. Kabai-Faix, Z. Hórvölgyi, Carbohydr. Polym, 2016, 136, 137–145.

C. Liu, Q. Bi, A. Leyland, A. Matthews, Corros. Sci. 2003, 45, 1257–1273

M.L. Zheludkevich, J. Tedim, C.S.R. Freire, S.C.M. Fernandes, S. Kallip, A. Lisenkov, A. Gandini, M.G.S. Ferreira, J. Mater. Chem. 2011, 21, 4805–4812.

Á.F. Szőke, G.S. Szabó, Z. Hórvölgyi, E. Albert, L. Gaina, L.M. Muresan, Carbohydr. Polym. 2019, 215, 63–72.

O. Lundvall, M. Gulppi, M.A. Paez, E. Gonzalez, J.H. Zagal, J. Pavez, G.E. Thompson, Surf. Coatings Technol. 2007, 201 5973–5978.

S.A. Umoren, M.J. Banera, T. Alonso-Garcia, C.A. Gervasi, M. V. Mirífico, Cellulose, 2013, 20 2529–2545.

Á.F. Szőke; G. Szabó; Z. Simó; Z. Hórvölgyi; E. Albert; A.G. Végh; L. Zimányi; L.M. Muresan; Eur. Polym. J., 2019, 118, 205–212.

J. Redepenning; G. Venkataraman; J. Chen; N. Stafford; J. Biomed. Mater. Res. - Part A., 2003, 66, 411–416.

J. Carneiro; J. Tedim; S.C.M. Fernandes; C.S.R. Freire; A. Gandini; M.G.S. Ferreira; M.L. Zheludkevich; ECS Electrochem. Lett., 2013, 2, C19.

K. Kurita, M. Hirakawa, S. Kikuchi, H. Yamanaka, J. Yang, Carbohydr. Polym. 2004, 56, 333–337.

A. Tiwari, J. Inorg. Organomet. Polym. Mater. 2009, 19, 361–366.

S. Höhne, R. Frenzel, A. Heppe, F. Simon, Biomacromolecules. 2007, 8, 2051–2058.

J. Xu, S.P. McCarthy, R.A. Gross, D.L. Kaplan, Macromolecules. 1996, 29, 3436–3440.

K.Y. Lee, W.S. Ha, W.H. Park, Biomaterials. 1995, 16, 1211–1216.

Z. Ye, X. Zhao, J. Microsc. 2010, 238, 27–35.

Z. Hórvölgyi, M. Máté, M. Zrínyi, Colloids Surfaces A Physicochem. Eng. Asp. 1994, 84, 207–216.

E. Bormashenko, Colloids Surfaces A Physicochem. Eng. Asp. 2008, 324, 47–50.

B. Matthes, E. Broszeit, J. Aromaa, H. Ronkainen, S.P. Hannula, A. Leyland, A. Matthews, Surf. Coatings Technol. 1991, 49, 489–495.

E. Hild, A. Deák, L. Naszályi, Ö. Sepsi, N. Ábrahám, Z. Hórvölgyi, J. Opt. A Pure Appl. Opt. 2007, 9, 920–930.

Downloads

Published

2020-09-30

How to Cite

MÁRTON, P. ., ALBERT, E. ., NAGY, N. ., TEGZE, B. ., SZABÓ, G. S. ., & HÓRVÖLGYI, Z. . (2020). CHEMICALLY MODIFIED CHITOSAN COATINGS: WETTING AND ELECTROCHEMICAL STUDIES. Studia Universitatis Babeș-Bolyai Chemia, 65(3), 63–79. https://doi.org/10.24193/subbchem.2020.3.05

Issue

Section

Articles

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.