VINCRISTINE AFFECTS THE REDOX REACTIVITY OF HEMOGLOBIN

Authors

  • Victoria CÎRJEU Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania.
  • Cristina PUȘCAȘ Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania.
  • Radu SILAGHI-DUMITRESCU Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. *Corresponding author: rsilaghi@chem.ubbcluj.ro https://orcid.org/0000-0002-4625-6525

DOI:

https://doi.org/10.24193/subbchem.2021.2.28

Keywords:

vincristine, hemoglobin, autoxidation, nitrite, oxidative stress, nitrosative stress, UV-vis.

Abstract

The anticancer drug vincristine, known to act by inhibiting tubulin function in human cells, is shown to affect autoxidation rates in hemoglobin – either alone or under conditions where nitrite acts as an initiator in a nitrosative stress cascade. This behavior mirrors those observed by us with four other antitubulin agents - irinotecan, docetaxel, paclitaxel and vinorelbine.

References

C. Puscas; A. Mircea; M. Raiu; M. Mic; A.A.A. Attia; R. Silaghi-Dumitrescu; A.A. A. Attia; R. Silaghi-Dumitrescu; Chem. Res. Toxicol. 2019, 32, 1402–1411.

C. Bischin; V. Taciuc; R. Silaghi-Dumitrescu; in Metal Elements in Environment, Medicine and Biology (ed. Radu Silaghi-Dumitrescu G. G.) (Eurobit Publishing House, 2010). X, 265–270.

C. Bischin; Ş. Ţǎlu; R. Silaghi-Dumitrescu; M. Ţǎlu; S. Giovanzana; C.A. Lupaşcu; Ann. Rom. Soc. Cell Biol. 2012, 17,

V. Taciuc; C. Bischin; R. Silaghi-Dumitrescu; in Metal Elements in Environment, Medicine and Biology Tome IX (eds. Silaghi-Dumitrescu R. & Garban G.) (Cluj University Press, 2009). 130–134.

C. Bischin; V. Taciuc; R. Silaghi-Dumitrescu; Studia UBB Chem. 2010, 55, 313–318.

N.B. Vollaard; B.J. Reeder; J.P. Shearman; P. Menu; M.T. Wilson; C.E. Cooper; Free Radic. Biol .Med. 2005, 39, 1216–1228.

C.E. Cooper; D.J. Schaer; P.W. Buehler; M.T. Wilson; B.J. Reeder; G. Silkstone; D.A. Svistunenko; L. Bulow; A. I. Alayash; Antioxidants Redox Signal. 2013, 18, 2264–2273.

B.J. Reeder; M.T. Wilson; Free. Radic. Biol. Med. 2001, 30, 1311–1318.

M.S. Rogers; R.P. Patel; B.J. Reeder; P. Sarti; M.T. Wilson; A.I. Alayash; Biochem. J. 1995, 310, 827–833.

B.J. Reeder; M.A. Sharpe; A.D. Kay; M. Kerr; K. Moore; M.T. Wilson; Biochem. Soc. Trans. 2002, 30, 745–748.

B.J. Reeder; M. Grey; R.-L. Silaghi-Dumitrescu; D.A. Svistunenko; L. Bülow; C.E. Cooper; M.T. Wilson; J. Biol. Chem. 2008, 283, 30780–30787.

B.J. Reeder; D.A. Svistunenko; M.A. Sharpe; M.T. Wilson; Biochemistry 2002, 41, 367–375.

S. Holt; B.J. Reeder; M.T. Wilson; S. Harvey; J.D. Morrow; L.J. Roberts 2nd; K. Moore; L.J. Roberts; K. Moore; L.J. Roberts 2nd; K. Moore; L.J. Roberts; K. Moore; Lancet 1999, 353, 1241.

B.J. Reeder; D.A. Svistunenko; C.E. Cooper; M.T. Wilson; Antioxidants Redox Signal. 2004, 6, 954–966.

K.P. Moore; S.G. Holt; R.P. Patel; D.A. Svistunenko; W. Zackert; D. Goodier; B.J. Reeder; M. Clozel; R. Anand; C.E. Cooper; J.D. Morrow; M.T. Wilson; V.M. DarleyUsmar; L.J. Roberts; V. Darley-Usmar; L.J. Roberts 2nd; L.J. Roberts 2nd; V.M. DarleyUsmar; L.J. Roberts; J. Biol. Chem. 1998, 273, 31731–31737.

M. Lehene; E. Fischer-Fodor; F. Scurtu; N.D. Hădade; E. Gal; A.C. Mot; A. Matei; R. Silaghi-Dumitrescu; Pharmaceuticals 2020, 13, 107.

D. Hathazi; F. Scurtu; C. Bischin; A. Mot; A. Attia; J. Kongsted; R. Silaghi-Dumitrescu; Molecules 2018, 23, E350.

L.I. Gǎinǎ; L.N. Mǎtǎrângǎ-Popa; E. Gal; P. Boar; P. Lönnecke; E. Hey-Hawkins; C. Bischin; R. Silaghi-Dumitrescu; I. Lupan; C. Cristea; L. Silaghi-Dumitrescu; Eur. J. Org. Chem. 2013, 5500–5508.

L. Gaina; I. Torje; E. Gal; A. Lupan; C. Bischin; R. Silaghi-Dumitrescu; G. Damian; P. Lonnecke; C. Cristea; L. Silaghi-Dumitrescu; Dye. Pigment. 2014, 102, 315–325.

C. Bischin; C. Tusan; A. Bartok; R. Septelean; G. Damian; R. Silaghi-Dumitrescu; Phosphorus, Sulfur Silicon Relat. Elem. 2015, 190, 292–299.

F. Liu; J. Huang; Z. Liu; Neuroscience 2019, 404, 530–540.

L. Zhou; L. Ao; Y. Yan; C. Li; W. Li; A. Ye; J. Liu; Y. Hu; W. Fang; Y. Li; Neurotherapeutics 2020, 17, 340–355.

M.E. Duckett; K.M. Curran; H.J. Leeper; C.E. Ruby; S. Bracha; Vet. Comp. Oncol. 2021, 19, 61–68.

J.A. Silverman; S.R. Deitcher; Cancer Chemother. Pharmacol. 2013, 71, 555–564.

L.D. Brühwiler; D.L.B. Schwappach; J. Oncol. Pharm. Pract. 2020, 26, 51–59.

M.L. Madsen; H. Due; N. Ejskjær; P. Jensen; J. Madsen; K. Dybkær; Cancer Chemother. Pharmacol. 2019, 84, 471–485.

C.E. Cooper; R. Silaghi-Dumitrescu; M. Rukengwa; A.I.I. Alayash; P.W.W. Buehler; Biochim. Biophys. Acta 2008, 1784, 1415–1420.

B.N. Ames; R. Cathcart; E. Schwiers; P. Hochstein; Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 6858–6862.

D. Hathazi; A.C. Mot; A. Vaida; F. Scurtu; I. Lupan; E. Fischer-Fodor; G. Damian; D.M. Kurtz Jr.; R. Silaghi-Dumitescu; Biomacromolecules 2014, 15, 1920–1927.

Downloads

Published

2021-06-30

How to Cite

CÎRJEU, V., PUȘCAȘ, C., & SILAGHI-DUMITRESCU, R. (2021). VINCRISTINE AFFECTS THE REDOX REACTIVITY OF HEMOGLOBIN. Studia Universitatis Babeș-Bolyai Chemia, 66(2), 325–332. https://doi.org/10.24193/subbchem.2021.2.28

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.