REMOVAL OF RHODAMINE FROM AQUEOUS SOLUTIONS USING NATURAL ZEOLITE
DOI:
https://doi.org/10.24193/subbchem.2021.2.15Keywords:
zeolites, rhodamine B, thermal activation.Abstract
The aim of this study was to evaluate the adsorption of rhodamine B (RB) from synthetic water using natural zeolites from Romania. The adsorption capacity of zeolite for RB removal was improved by heat treatment at 200, 400 and 600 °C. The chemical and structural characterization of untreated and thermally treated zeolites was performed using advanced techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The adsorption behavior of RB on activated zeolites was studied using Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The thermally treated zeolite at 200°C gave the highest adsorption efficiency (97.9%) for RB adsorption from aqueous solutions. According to the obtained results, it can be concluded that thermally treated zeolite can be used as an effective adsorbent for the removal of RB from wastewater.References
R. Pelalak; R. Soltani; Z. Keidari; R.E. Malekshah; M. Aallaei; A. Marjani; M. Rezakazemi; T.A. Kurniawan; S. Shirazian; J. Mol. Liq., 2021, 322, 114812.
W. Li; B. Mu; Y. Yang; Bioresour. Technol., 2019, 277, 157-170.
J. Bu; L. Yuan; N. Zhang; D. Liu; Y. Meng; X. Peng; Diam. Relat. Mater., 2020, 101, 107604.
F. Motahari; M.R. Mozdianfard; M. Salavati-Niasari; Process Saf. Environ. 2015, 93, 282-292.
M. Rahmani; M. Kaykhaii; M. Sasani; Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2018, 188, 164-169.
S. Mishra; L. Cheng; A. Maiti; J. Environ. Chem. Eng., 2021, 9, 104901.
M.F. Chowdhury; S. Kladaker; F. Sarker; A. Islam; M.T. Rahman; M.R. Awual; J. Mol. Liq., 2020, 318, 114061.
M.A. Farghali; M. M. Abo-Aly; T.A. Salaheldin; Inorg. Chem. Commun., 2021, 126, 108487.
H. Mittal; R. Badu; A.A. Dabbawala; S. Stephen; S.M. Alhassan; Colloids Surf. A, 2020, 586, 124161.
S. Sivalingam; S. Sen; J. Taiwan Inst. Chem. Eng., 2019, 96, 305-314.
O. Cadar; M. Senila; M.A. Hoaghia; D.A. Scurtu; I. Miu; E.A. Levei; Molecules, 2020, 25(11), 2570.
F. Alakhras; E. Alhajri; R. Haounati; H. Ouachtak; A.A. Addi; T.A. Saleh; Surf. Interfaces, 2020, 20, 100611.
Z. Cheng; Y. Li; Z. Liu; Ecotoxicol. Environ. Saf., 2018, 148, 585-592.
Z. Cheng; Y. Li; Z. Liu; J. Alloy. Compd., 2017, 708, 255-263.
C. Cruciani; J. Phys. Chem. Solids, 2006, 67, 1994.
Y. Ji; F. Xu; W. Wei; H. Gao; K. Zhang; G. Zhang; Y. Xu; P. Zhang; J. Solid State Chem., 2021, 295, 121917.
B. Ertan; S. Gurkok; D. Efe; Stud U Babes-Bol. Che., 2020, 4, 109-123.
A. Sarı; M. Tuzen; J. Hazard. Mater., 2008, 152, 302-308.
M. Senila; O. Cadar; L. Senila; A. Hoaghia; I. Miu; Molecules, 2019, 24(22), 4023.
A.F. Gualtierei; E. Marchi; E. Passaglia; Stud. Surf. Sci. Catal., 1999, 125, 707-713.
I. Langmuir; J. of Am. Chem. Soc., 1916, 38, 2221–2295.
N. Ayawei; E.A. Newton; D. Wankasi; J. Chem., 2017, Article ID 3039817.
Y. Zhuang; F. Yu; J. Chen; J. Ma; J. Environ. Chem. Eng., 2016, 4(1), 147–156.
M.M. Dubini; Chem. Rev., 1960, 60, 235–241.
X. Hu; X. Du; Molecules, 2019, 24, 1449.
N.T. Thanh; T.V. Thien; P.D. Du; C.V.T. Thanh; T.X. Mau; D.Q. Khieu; J. Environ. Chem. Eng., 2018, 6(2), 2269-2280.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.