INFLUENCE OF GRAIN AND CRYSTALLITE SIZE ON THE GIBBSITE TO BOEHMITE THERMAL TRANSFORMATION

Authors

  • Viktor Zsolt BARANYAI Department of Combustion Technology and Thermal Energy, University of Miskolc; Department of Advanced Materials, Bay Zoltán Nonprofit Ltd. for Applied Research, Miskolc, Hungary. Corresponding author: kristalyf@gmail.com. https://orcid.org/0000-0001-9148-4220
  • Ferenc KRISTÁLY Institute of Mineralogy and Geology, University of Miskolc, Miskolc-Egyetemváros, Hungary. Email: kristalyf@gmail.com. https://orcid.org/0000-0002-0075-5994
  • István SZŰCS Department of Combustion Technology and Thermal Energy, University of Miskolc, Hungary. Corresponding author: kristalyf@gmail.com.

Keywords:

gibbsite decomposition, boehmite evolution, nanocrystalline boehmite, Rietveld-refinement

Abstract

Thermal decomposition processes of three different samples of hydrated alumina: Bayer precipitated size fractioned, Bayer precipitated ground and fine precipitated, were studied. These were investigated with special regard to the evolution of boehmite. The original samples contained 75-85 wt% of gibbsite, while remaining material with gibbsite-like Al2O3-H2O ratio did not show long range order crystallinity. Decomposition reactions were observed by thermal analysis and reaction products were investigated by powder X-ray diffraction. Grain sizes were determined by laser diffraction and morphological changes of grains were observed by scanning electron microscopy. Boehmite formation is influenced mainly by grain and crystallite sizes of starting materials, while degree of crystallinity is of less importance. Transformation of gibbsite to boehmite was most pronounced in the case of coarse grains, nevertheless in fine particles boehmite evolution seemed retarded.

References

W.H. Gitzen, "Alumina as a Ceramic Material", American Ceramic Society, Westerville, 1970.

R. Salomão, J. Brandi, Ceram. Int., 2013, 39, 8227.

R. Salomão, M.O.C. Villas Bôas, V.C. Pandolfelli, Ceram. Int., 2011, 37, 1393.

L. Peng, X. Xu, Z. Lv, J. Song, M. He, Q. Wang, L. Yan, Y. Li, Z. Li, J. Therm. Anal. Calorim., 2012, 110, 749.

W.J. Tseng, P. Wu, Ceram. Int., 2012, 38, 4461.

W.J. Tseng, P. Wu, Ceram. Int., 2012, 38, 2711.

F. Habashi, “Extractive Metallurgy of Aluminum”, in G.E. Totten, D.S. MacKenzie, “Handbook of Aluminum: Volume 2: Alloy Production and Materials Manufacturing”, Taylor & Francis, New York, Basel, 2003.

A.R. Hind, K.S. Bhargava, C.S. Grocott, Colloid. Surface, 1999, 146, 359.

J.M.R. Mercury, P. Pena, A.H.D. Aza, D. Sheptyakov, X. Turrillas, J. Am. Ceram. Soc., 2006, 89, 3728.

L.M. Perander, “Evolution of Nano- and Microstructure During the Calcination of Bayer Gibbsite to Produce Alumina”, PhD thesis, The University of Auckland, Auckland, 2010.

B. Zhu, B. Fang, X. Li, Ceram. Int., 2010, 36, 2493.

B. Xu, P. Smith, Thermochim. Acta, 2012, 531, 46.

B.K. Gan, I.C. Madsenb, J.G. Hockridge, J. Appl. Crystallogr., 2009, 42, 697.

J. Rouquerol, F. Rouquerol, M. Ganteaume, J. Catal., 1975, 36, 99.

J. Rouquerol, M. Ganteaume, J. Therm. Anal., 1977, 11, 201.

N. Koga, S. Yamada, Solid State Ionics, 2004, 172, 253.

C. Novák, G. Pokol, V. Izvekov, T. Gál, J. Therm. Anal., 1990, 36, 1895.

I.N. Bhattacharya, S.C. Das, P.S. Mukherjee, S. Paul, P.K. Mitra, Scand. J. Metall., 2004, 33, 211.

T. Tsuchida, N. Ichikawa, React. Solid., 1989, 7, 207.

J. Temuujin, K.J.D. MacKenzie, M. Schmücker, H. Schneider, J. McManus, S. Wimperis, J. Eur. Ceram. Soc., 2000, 20, 413.

T.C. Alex, J. Therm. Anal. Calorim., 2014, 117, 163.

K.J.D. MacKenzie, J. Temuujin, K. Okada, Thermocim. Acta, 1999, 327, 103.

N. Koga, J. Therm. Anal. Calorim., 2005, 81, 595.

N. Koga, T. Fukagawa, H. Tanaka, J. Therm. Anal. Calorim., 2001, 64, 965.

E.E. Kiss, G.C. Boskovic, Rev. Roum. Chim., 2013, 58, 3

C. Dan, E.-J. Popovici, F. Imre, E. Indrea, P. Mărginean, I. Silaghi-Dumitrescu, Studia UBB Chemia, 2007, LII, 91.

S. Cassiano-Gaspar, D. Bazer-Bachi, J. Chevalier, E. Lécolier, Y. Jorand, L. Rouleau, Powder Technol., 2014, 255, 74.

K. Okada, T. Nagashima, Y. Kameshima, A. Yasumori, Ceram. Int., 2003, 29, 533.

C.J. Oh, Y.K. Yi, S.J. Kim, T. Tran, M.J. Kim, Powder Technol., 2013, 235, 556.

M. Földvári, “Handbook of thermogravimetric system of minerals and its use in geological practice”, Magyar Állami Földtani Intézet, Budapest, 2011.

V.Z. Baranyai, F. Kristály, I. Szűcs, Materials Science and Engineering: A Publication of the University of Miskolc, 2013, 38, 15.

H.W. Zhang, Q. Zhou, H.L. Xing, H. Muhlhaus, Powder Technol., 2011, 205, 172.

K.C. Smith, T.S. Fisher, Int. J. Hydrogen Energy, 2012, 37, 13417.

K.J.D. MacKenzie, J. Temuujin, M.E. Smith, P. Angerer, Y. Kameshima, Thermochim. Acta, 2000, 359, 87.

D.A. Ksenofontov, Y.K. Kabalov, Inorg. Mater., 2012, 48, 142.

B. Whittington, D. Ilievski, Chem. Eng. J., 2004, 98, 89.

V. Balek, J. Šubrt, J. Rouquerol, P. Llewellyn, V. Zeleòák, I. M. Bountsewa, I.N. Beckman, K. Györyová, J. Therm. Anal. Calorim., 2003, 71, 773.

Downloads

Published

2015-06-01

How to Cite

BARANYAI, V. Z. ., KRISTÁLY, F. ., & SZŰCS, I. . (2015). INFLUENCE OF GRAIN AND CRYSTALLITE SIZE ON THE GIBBSITE TO BOEHMITE THERMAL TRANSFORMATION. Studia Universitatis Babeș-Bolyai Chemia, 60(2), 27–44. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/chemia/article/view/8426

Issue

Section

Articles

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.