A STRAIGHTFORWARD METHOD FOR DETERMINATION OF Ba AND Sr TOTAL CONTENT IN NATURAL ZEOLITES BASED ON MICROWAVE-ASSISTED DIGESTION AND INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION SPECTROMETRY
DOI:
https://doi.org/10.24193/subbchem.2021.2.09Keywords:
trace metal, aluminosilicate, barium, strontium, ICP-OES, microwave digestion.Abstract
Ba and Sr may occur in relatively high content in natural zeolites and can contribute to the zeolites ion-exchange properties. In addition, some soluble compounds of Ba and Sr can be toxic, thus their determination is important. The aim of this paper was the development and validation of a method for determination of Ba and Sr in zeolites based on microwave-assisted acid digestion and inductively coupled plasma optical emission spectrometry (ICP-OES). For validation, a certified reference material (BCS-CRM 375/1) was used in the accuracy study, and the obtained recoveries were 92 ± 10 % for Ba and 95 ± 12 % for Sr. A mixture of HNO3:HCl:HF of 3:9:2 (v/v/v) and a digestion time of 40 min were found to give recoveries in the range of 80-120 %. The obtained LOQs in ICP-OES allowed the quantification of concentrations above 5.0 mg kg-1 Ba and 3.8 mg kg-1 Sr. The method was applied for the determination of Ba and Sr in five zeolite samples, and concentrations of 422 – 580 mg kg-1 for Ba and 115 – 183 mg kg-1 for Sr were found. The obtained performance parameters were in agreement with the requirements of international guidelines regarding methods validation.
References
Y. Li; A. O. Simon; C. Jiao; M. Zhang; W. Yan; H. Rao; J. Liu; J. Zhang; Microporous Mesoporous Mater., 2020, 302, 110244.
S.A. Maicaneanu; H. Bedelean; Studia UBB Chemia, 2020, LXV, 3, 89-100.
E. Neag; A.I. Torok; C. Tanaselia; I. Aschilean; M. Senila; Water, 2020, 12, 1614.
M. Senila; O. Cadar; L. Senila; A. Hoaghia; I. Miu; Molecules, 2019, 24, 4023.
M. Tomasevic-Canovic; J. Serb. Chem. Soc., 2005, 70, 1335-1345.
S. Chalupnik; W. Franus; M. Wysocka; G. Gzyl; Environ. Sci. Pollut. Res., 2013, 20, 7900-7906.
A.K. Mosai; H. Tutu; Miner. Eng., 2021, 161, 106740.
S. Kwon; C. Kim; E. Han; H. Lee; H.S. Cho; M. Choi; J. Hazard. Mater., 2021, 408, 124419.
D. Alby; C. Charnay; M. Heran; B. Prelot; J. Zajac; J. Hazard. Mater., 2018, 344, 511-530.
D. Gonzalez-Weller; C. Rubio; A.J. Gutierrez; G.L. Gonzalez; J.M. Caballero Mesa; C. Revert Girones; A. Burgos Ojeda; A. Hardisson; Food Chem. Toxicol., 2013, 62, 856-868.
I.R. McNeill; K.Z. Isoardi; Toxicol. Commun., 2019, 3, 88-90.
H. Zhang; X. Zhou; L; Wang; W. Wang; J. Xu; Ecotox. Environ. Safe., 2018, 164, 181-188.
Z. Liu; B. Chen; X. Li; L. Wang; H. Xiao; D. Liu; Sci. Total Environ., 2019, 670, 433-438.
Y. Ma; S. Rigolet; L. Michelin; J.L. Paillaud; S. Mintova; F. Khoerunnisa; T.J. Daou; E.P. Ng; Microporous Mesoporous Mater., 2021, 311, 110683.
T. Frentiu; S. Butaciu; E. Darvasi; M. Ponta; M. Senila; D. Petreus; M. Frentiu; Anal. Methods, 2015, 7, 747-752.
M. Miclean; E.A. Levei; M. Senila; C. Roman; E. Cordos; Rev. Chim. (Bucuresti), 2009, 60, 1-4.
I. Smical; A. Muntean; D. Ciurte; V. Micle; Studia UBB Chemia, 2020, LXV, 4, 95-107.
G.E. Damian; V. Micle; I.M. Sur; J. Soil. Sediment., 2019, 19, 2869-2881.
H. Altundag; M. Tuzen; Food Chem. Toxicol., 2011, 49, 2800-2807.
V.B.K. Mullapudi; K. Chandrasekaran; G. Venkateswarlu; D. Karunasagar; Microchem. J., 2019, 146, 807-817.
AOAC Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals. (2002). https://members.aoac.org/AOAC_Docs/StandardsDevelopment/SLV_Guidelines_Dietary_Supplements.pdf (accessed Mar 2021).
P.K. Srivastava; A.K. Singh; B. Sunilkumar; At. Spectrosc., 2003, 24, 98-104.
M. Balcerzack; Anal. Sci., 2002, 18, 737-750.
B. Magnusson; U. Ornemark (eds.) Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics, (2nd ed. 2014), available from https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf, accessed on 22.06.2021
A. Drolc; A. Pintar; Accreditation and Qual. Assur., 2012, 17, 323–330.
E. Covaci; M. Senila; M; Ponta; E; Darvasi; D. Petreus; M. Frentiu; T. Frentiu; Talanta, 2017, 170, 464-472.
P. Pohl; A. Szymczycha-Madeja; M. Welna; Food Chem., 2018, 263, 171-179.
International organization for standardization (1990) ISO 8466-1 Water quality. Calibration and evaluation of analytical methods and estimation of performance characteristics - Part I: Statistical evaluation of the linear calibration function, Geneva, Switzerland.
E. Covaci; M. Senila; M. Ponta; T. Frentiu; Rev. Roum. Chim., 2020, 65, 735-745.
M. Senila; E. Covaci; O. Cadar; M. Ponta; M. Frentiu; T. Frentiu; Chem. Pap., 2018, 72, 441-448.
M. Kurudirek; Y. Ozdemir; I. Turkmen; A. Levet; Radiat. Phys. Chem., 2010, 79, 1120-1126.
N. Karapinar; J. Hazard. Mater., 2009, 170, 1186-1191.
A. Maicaneanu; H. Bedelean; M. Stanca; Natural Zeolites. Characterization and Applications in Environmental Protection, Editura Presa Universitara Clujeana, Romania, 2008, pp. 59–78 (in Romanian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.