METHOD VALIDATION FOR THE DETERMINATION OF EXCHANGEABLE CATIONS IN NATURAL ZEOLITES USING INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION SPECTROMETRY
DOI:
https://doi.org/10.24193/subbchem.2021.2.07Keywords:
zeolites, exchangeable cations, ICP-OES, method validation, cation exchange capacity.Abstract
The paper presents the validation of a method for the determination of exchangeable cations (K+, Na+, Ca2+ and Mg2+) in zeolites by inductively coupled plasma optical emission spectrometry (ICP-OES), after extraction in ammonium chloride solution. Amongst the analytical techniques that can be used for exchangeable cations measurement, ICP-OES provides rapid, robust, multi-element analysis on a wide range of concentrations. The exchange capacity is one of the most important parameters of zeolites since it indicates their adsorption capacity in different processes. Method validation is an essential requirement for testing laboratories in order to provide trustworthy results in accordance with ISO/IEC 17025:2017 standard. The main figures of merit were studied, and the measurement uncertainty was assessed. The selectivity assay showed no significant non-spectral matrix effect. The linearity study was conducted for the calibration curves in the range of 0.02–20 mg L−1 for each exchangeable cation. Limits of quantification were 0.005 mEq 100 g-1 for Na+, 0.011 mEq 100 g-1 for Mg2+, 0.002 mEq 100 g-1 for K+, 0.003 mEq 100 g-1 for Ca2+. Relative standard deviations of repeatability (RSDr) (n=6 parallel samples) were 4.50 % for Na+, 4.43 % for Mg2+, 6.55 % for K+ and 5.53 % for Ca2+. Recoveries (%) estimated using a certified reference material (CRM BCS-CRM 375/1), for total content of cation oxides were in the range 92–103 %. Fourteen zeolite samples from Racos deposit, Romania were analysed, and according to the chemical composition and X-ray diffraction the main mineral in zeolitic tuffs is clinoptilolite-type. The obtained figures of merit demonstrate that the method has a suitable level of precision and accuracy for the intended purpose.
References
S. Kraljevic Pavelic; J. Simovic Medica; D. Gumbarevic; A. Filosevic; N. Przulj; K. Pavelic; Front. Pharmacol., 2018, 9, 1350.
B. Calvo; L. Canoira; F. Morante; J.M. Martinez-Bedia; C. Vinagre; J.E. Garcia-Gonzalez; J. Elsen; R. Alcantara; J. Hazard. Mater., 2009, 166, 619-627.
M. Senila; O. Cadar; L. Senila; A. Hoaghia; I. Miu; Molecules, 2019, 24, 4023.
M. Hong; L. Yu; Y. Wang; J. Zhang; Z. Chen; L. Dong; Q. Zan; R. Li; Chem. Eng. J., 2019, 359, 363–372.
A. Mastinu; A. Kumar; G. Maccarinelli; S.A. Bonini; M. Premoli; F. Aria; A. Gianoncelli; M. Memo; Molecules, 2019, 27, 1517.
M. Mudasir; K. Karelius; N.H, Aprilita, E.T. Wahyuni; J. Environ. Chem. Eng., 2016, 4, 1839-1849.
S.A. Maicaneanu; H. Bedelean; Studia UBB Chemia, 2020, LXV, 3, 89-100.
O. Cadar; M. Senila; M.A. Hoaghia; D. Scurtu; I. Miu; E.A. Levei; Molecules, 2020, 25, 2570.
M.W. Munthali; P. Kabwadza-Corner; E. Johan, N. Matsue; J. Mater. Sci. Chem. Eng., 2014, 2, 1-5.
K. Kitsopoulos; Clays Clay Miner., 1999, 47, 688-696.
E. Covaci; M. Senila; M. Ponta; T. Frentiu; Rev. Roum. Chim., 2020, 65, 735-745.
T. Frentiu; M. Ponta.; M. Senila; A.I. Mihaltan.; E. Darvasi; M. Frentiu; E. Cordos; J. Anal. At. Spectrom., 2010, 25, 739–742.
M. Senila; E. Levei; L. Senila; O. Cadar; G. Oprea; C. Roman; Studia UBB Chemia, 2011, 56, 27.
A. Tudorache; D.E. Ionita; N.M. Marin; C. Marin; I.A. Badea; Accred. Qual Assur., 2017, 22, 29–35.
M. Senila; E. Covaci; O. Cadar; M. Ponta; M. Frentiu; T. Frentiu; Chem. Pap., 2018, 72, 441-448.
T. Frentiu; S. Butaciu; E. Darvasi; M. Ponta; M. Senila; D. Petreus; M. Frentiu; Anal. Methods., 2015, 7, 747–752.
B. Magnusson; U. Ornemark (eds.) Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics, (2nd ed. 2014), available from https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf, accessed on 18.03.2021.
M. Senila; J. Environ. Health Sci. Eng., 2014, 12, 108.
StatSoft, Inc. (2011). STATISTICA (data analysis software system), version 10. www.statsoft.com.
M.K. Cain; Z. Zhang; K.H. Yuan; Behav. Res., 2017, 49, 1716-1735.
D. Bish; J. Boak; Rev. Mineral. Geochem., 2001, 45, 207-216.
A. Drolc; A. Pintar; Accreditation Qual. Assur., 2012, 17, 323–330.
N. Eroglu; M. Emekci; C.G. Athanassiou; J. Sci. Food Agric., 2017, 97, 3487–3499.
B. Hudcova; M. Osacky; M. Vítkova; A. Mitzia; M. Komarek; Microporous Mesoporous Mater., 2021, 317, 111022.
J.A. Ricardo-Garcia; Y. Enamorado-Horrutiner; G. Rodriguez-Fuentes; M.S. Pomares-Alfonso; M.E. Villanueva-Tagle; Microchem. J., 2021, 164, 106064.
International organization for standardization (1990) ISO 8466-1 Water quality. Calibration and evaluation of analytical methods and estimation of performance characteristics - Part I: Statistical evaluation of the linear calibration function, Geneva, Switzerland.
Chemical Methods for Dietary Supplements and Botanicals. (2002) https://www.aoac.org/aoac_prod_imis/AOAC_Docs/StandardsDevelopment/SLV_Guidelines_Dietary_Supplements.pdf (accessed May 2021).
M. Moshoeshoe; M.S. Nadiye-Tabbiruka; V.O. Moshoeshoe; Am. J. Mater. Sci., 2017, 7, 196-221.
D. Kallo; Rev. Mineral. Geochem., 2001, 45, 519–550.
E. Neag; A.I. Torok; C. Tanaselia; I. Aschilean; M. Senila; Water, 2020, 12, 1614.
L. Belchinskaya; L. Novikova; V. Khokhlov; J.L. Tkhi; J. Appl. Chem., 2013, 789410, 1-9.
G. Cerri; A. Langella; M. Pansini; P. Cappelletti; Clays Clay Miner., 2002, 50, 127–135.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.