THE COMPLEMENTARY ROLE OF THE RAMAN MICROSPECTROSCOPY TO THE OXIDATIVE STRESS ASSAYS IN THE NEONATAL SYNAPTOSOMES CHARACTERIZATION
DOI:
https://doi.org/10.24193/subbchem.2021.3.11Keywords:
Raman, synaptosomes, brain, vesicles, sensitive method, redox status.Abstract
Raman microspectroscopy was tested as an alternative/complementary method for biochemical evaluation of the synaptosomes obtained from neonatal rat brain prenatally exposed to sodium valproate and treated with allicin. Spectrophotometric assays of several oxidative stress markers (catalase, superoxide dismutase, total thiols) and acetylcholine esterase activity revealed the redox balancing function and pro-cholinergic effect of the allicin as compared to the valproate effect. Raman evaluation showed no significant changes in our experimental conditions. Different concentrations and volumes of the synaptosomes vesicles must be tested for the optimal Raman examination of these purified synaptosomes.References
C. Frisch; K. F. Hüsch; A. Angenstein; W. Kudin; C. E. Kunz; C. Elger Helmestaedter; Epilepsia, 2009, 50, 1432-1441.
J. Borlinghaus; F. Albrecht; M. C. H. Gruhlke; I. D. Nwachukwu; A. J. Slusarenko; Molecules, 2014, 19, 12591-12618.
C. Hacioglu; F. Kar; G. Kanbak; Med. Sci. Discovery, 2018, 5, 192-197.
M. Lasalvia; G. Perna; V. Capozzi; Appl. Spectrosc., 2014, 68, 1123-1131.
G. Devitt; K. Howard; A. Mudher; S. Mahajan; ACS Chem. Neurosci., 2018, 9, 404-420.
T. D. Payne; A. S. Moody; A. L. Wood; P. A. Pimiento; J. C. Elliott; B. Sharma; Analyst, 2020, 145, 3461-3480.
K. Ajito; C. Han; K. Torimitsu; Microsc. Microanal., 2003, 9, 1062-1063.
H. Wang; T. S. Tsai; J. Zhao; A. M. D. Lee; B. K. K. Lo; M. Yu; H. Lui; D. I. McLean; H. Zeng; Photodermatol. Photoimmunol. Photomed., 2012, 28, 147-152.
P. Donfack; M. Rehders; K. Brix; P. Boukamp; A. Materny; J. Raman Spectrosc., 2010, 41, 16-26.
Y. Li; Z. N. Wen; L. J. Li; M. L. Li; N. Gao; Y. Z. Guo; J. Raman Spectrosc., 2010, 41, 142-147.
H. M. Schipper; C. S. Kwok; S. M. Rosendahl; D. Bandilla; O. Maes; C. Melmed; D. Rabinovitch; D. H. Burns; Biomarkers Med., 2008, 2, 229-238.
M. Muratore; Anal. Chim. Acta, 2013, 793, 1-10.
D. Sun; X. Chen; ACS Cent. Sci., 2020, 6, 459-460.
A. Mizuno; T. Hayashi; K. Tashibu; S. Maraishi; K. Kawauchi; Y. Ozaki; Neurosci. Lett., 1992, 141, 47-52.
K. Ajito; K.Torimitsu; Lab. Chip., 2002, 2, 11-14.
K. Ajito; C. Han; K. Torimitsu; Anal. Chem., 2004, 76, 2506-2510.
V. Toma; A. B. Tigu; A. D. Farcaș; B. Sevastre; M. Taulescu; A. M. Gherman; . Roman; E. Fischer-Fodor; M. Pârvu; Int. J. Mol. Sci., 2019, 20, 1-18.
K. A. Loyd; Biosci. Horiz., 2013, 6, 1-10.
A. Rabinkov; T. Miron; D. Mirelman; M. Wilchek; S. Glozman; E. Yavin; L. Weiner; Biochim. Biophys. Acta, 2000, 1499, 144-153.
A. L. Christianson; N. Chesler; J. G. Kromberg; Dev. Med. Child. Neurol., 1994, 30, 161-171.
M. Kuwagata; T. Ogawa; S. Shioda; T. Nagata; Int. J. Devl. Neuroscience, 2009, 27, 399-405.
C. H. Kim; P. Kim; H. S. Go; G. S. Choi; J. H. Park; H. E. Kim; S. J. Jeon; I. C. Pena; S. H. Han; J. H. Cheong; J. H. Ryu; C. Y. Shin; J. Neurochem., 2013, 124, 832-843.
S. Kumar; Indian J. Pharmacol., 2015, 47, 444.
H. Zhang; P. Wang; Y. Xue; L. Liu; Z. Li; Y. Liu; Tissue and Cell, 2018, 50, 89-95.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.