A COMPUTATIONAL STUDY ON Ca²⁺ MODULATION OF ASIC 1 PHARMACOLOGIC PROPERTIES

Authors

  • Raluca NICULAE University of Bucharest, Faculty of Biology, Splaiul Independentei, 91-95, 050095, Bucharest, Romania.
  • Maria MERNEA University of Bucharest, Faculty of Biology, Splaiul Independentei, 91-95, 050095, Bucharest, Romania. *Corresponding author: maria.mernea@bio.unibuc.ro https://orcid.org/0000-0003-3432-3302
  • Loredana GHICA University of Bucharest, Faculty of Biology, Splaiul Independentei, 91-95, 050095, Bucharest, Romania.
  • Dan Florin MIHĂILESCU University of Bucharest, Faculty of Biology, Splaiul Independentei, 91-95, 050095, Bucharest, Romania.

DOI:

https://doi.org/10.24193/subbchem.2021.3.07

Keywords:

ASIC1, molecular docking, protein-ligand interaction, pharmacology.

Abstract

Acid-sensing ion channel (ASIC) is involved in important processes like synaptic plasticity and learning, fear and anxiety, pain sensation. Due to its role in neurodegeneration and neuroinflammation, the channel is a viable pharmacological target. The channel is activated by acid pH pulses and it rapidly desensitizes; therefore the channel can exist in open, closed and desensitized states.  Here we performed a molecular docking study of some ASIC1 ligands like amiloride, cocaine, histamine, ibuprofen, sinomenine and Zn2+ in the transmembrane region of ASIC1 channel models in different states (closed, open and desensitized). Also, since channel properties are influenced by Ca2+, we performed a set of calculations when Ca2+ is present in the channel pore. In addition, we modelled mutant channels in different states with substitutions of residues forming Ca2+ binding sites. The interaction of ligands with mutant channel models was investigated in the presence and absence of Ca2+. Our results show an affinity of ASIC1 for ibuprofen, followed by Zn2+, histamine and amiloride. Sinomenine and cocaine do not appear as ASIC1 ligands regardless of channel state. Overall, Ca2+ enhances the interactions of ligands with the channels, including the interactions of cocaine that is not recognized as an ASIC1 ligand. The effect of mutations is to reduce the favourable interactions with ligands. The results obtained on the three channel states are consistent, showing that results are not significantly influenced by the choice of model. Our results bring new information on ASIC1 pharmacological modulation by showing that Ca2+ presence in the pore enhances channel affinity for ligands.

References

M. Paukert, E. Babini, M. Pusch, S. Grunder, J Gen Physiol, 2004. 124(4): p. 383-94.

S. Kellenberger, L. Schild, Pharmacol Rev, 2015. 67(1): p. 1-35.

J. Du, L. R. Reznikov, M. J. Welsh, PLoS One, 2014. 9(12): p. e115310.

A.E. Ziemann, J.E. Allen, N.S. Dahdaleh, Drebot, II, M.W. Coryell, A.M. Wunsch, C.M. Lynch, F.M. Faraci, M.A. Howard, 3rd, M.J. Welsh, J.A. Wemmie. Cell, 2009. 139, 1012-21.

N.K. Isaev, E.V. Stelmashook, E.Y. Plotnikov, T.G. Khryapenkova, E.R. Lozier, Y.V. Doludin, D.N. Silachev,D.B. Zorov, Biochemistry (Mosc), 2008. 73(11): p. 1171-5.

C.C. Chen, C.W. Wong, J Cell Mol Med, 2013. 17(3): p. 337-49.

S. Chai, M. Li, D. Branigan, Z.G. Xiong, R.P. Simon, J Biol Chem, 2010. 285(17): p. 13002-11.

M.A. Friese, M.J. Craner, R. Etzensperger, S. Vergo, J.A. Wemmie, M.J. Welsh, A. Vincent, L. Fugger, Nat Med, 2007. 13(12): p. 1483-9.

O. Alijevic, S. Kellenberger, J Biol Chem, 2012. 287(43): p. 36059-70.

Y.Z. Wang, J.J. Wang, Y. Huang, F. Liu, W.Z. Zeng, Y. Li, Z.G. Xiong, M.X. Zhu, T.L. Xu, Elife, 2016. 5.

X.P. Chu, Z.G. Xiong, Adv Exp Med Biol, 2013. 961: p. 419-31.

Z.G. Xiong, X.M. Zhu, X.P. Chu, M. Minami, J. Hey, W.L. Wei, J.F. MacDonald, J.A. Wemmie, M.P. Price, M.J. Welsh, R.P. Simon, Cell, 2004. 118(6): p. 687-98.

D.M. MacLean, V. Jayaraman, Proc Natl Acad Sci USA, 2017. 114(12).

N. Yoder, E. Gouaux, PLoS One, 2018. 13(12): p. e0209147.

M. Paukert, X. Chen, G. Polleichtner, H. Schindelin, S. Grunder, J Biol Chem, 2008. 283(1): p. 572-81.

G. Pignataro, O. Cuomo, E. Esposito, R. Sirabella, G. Di Renzo, L. Annunziato, Int J Physiol Pathophysiol Pharmacol, 2011. 3(1): p. 1-8.

J.A. Wemmie, R.J. Taugher, C.J. Kreple, Nat Rev Neurosci, 2013. 14(7): p. 461-71.

R.V. A. O. Ramírez, E. Soto, Mediators Inflamm., 2017.

A. Baron, E. Lingueglia, Neuropharmacology, 2015. 94: p. 19-35.

S. Gründer, X. Chen, International journal of physiology, pathophysiology and pharmacology, 2010. 2(2): p. 73-94.

K.A. Sluka, O.C. Winter, J.A. Wemmie, Curr Opin Drug Discov Devel, 2009. 12(5): p. 693-704.

D.I. Osmakov, T.A. Khasanov, Y.A. Andreev, E.N. Lyukmanova, S.A. Kozlov, Frontiers in pharmacology, 2020. 11: p. 991-991.

W. Jiang, W. Fan, T. Gao, T. Li, Z. Yin, H. Guo, L. Wang, Y. Han, J.-D. Jiang, Pain Research and Management, 2020. 2020: p. 1876862.

R. Waldmann, G. Champigny, F. Bassilana, C. Heurteaux, M. Lazdunski, Nature, 1997. 386(6621): p. 173-7.

S. Ugawa, Y. Ishida, T. Ueda, K. Inoue, M. Nagao, S. Shimada, Biochem Biophys Res Commun, 2007. 363(1): p. 203-8.

O.I. Barygin, M.S. Komarova, T.B. Tikhonova, A.S. Korosteleva, M.V. Nikolaev, L.G. Magazanik, D.B. Tikhonov, Channels, 2017. 11(6): p. 648-659.

C. González-Inchauspe, M.N. Gobetto, O.D. Uchitel, Neuroscience, 2020. 439: p. 195-210.

A.L. Gutman, C.V. Cosme, M.F. Noterman, W.R. Worth, J.A. Wemmie, R.T. LaLumiere, Addict Biol, 2020. 25(2): p. e12690.

C.J. Kreple, Y. Lu, R.J. Taugher, A.L. Schwager-Gutman, J. Du, M. Stump, Y. Wang, A. Ghobbeh, R. Fan, C.V. Cosme, L.P. Sowers, M.J. Welsh, J.J. Radley, R.T. LaLumiere, J.A. Wemmie, Nature Neuroscience, 2014. 17(8): p. 1083-1091.

H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, Nucleic Acids Research, 2000. 28: p. 235-242.

I. Baconguis, E. Gouaux, Nature, 2012. 489(7416): p. 400-5.

J. Jasti, H. Furukawa, E.B. Gonzales, E. Gouaux, Nature, 2007. 449(7160): p. 316-23.

M.M. L. L. Ghica, R. Niculae, D. F. Mihailescu, rpj, 2020. 65: p. 9-10.

V.S. Korkosh, D.B. Tikhonov, Dokl Biochem Biophys, 2019. 485(1): p. 111-114.

Y. Liu, J. Ma, R.L. DesJarlais, R. Hagan, J. Rech, D. Lin, C. Liu, R. Miller, J. Schoellerman, J. Luo, M. Letavic, B. Grasberger ,M. Maher, Communications Biology, 2021. 4(1): p. 174.

A.V. Ilyaskin, A. Diakov, C. Korbmacher, S. Haerteis, Physiological reports, 2017. 5(3): p. e13132.

A. Schmidt, G. Rossetti, S. Joussen, S. Gründer, Mol Pharmacol, 2017. 92(6): p. 665-675.

I. Baconguis, C.J. Bohlen, A. Goehring, D. Julius, E. Gouaux, Cell, 2014. 156(4): p. 717-29.

T. Lynagh, J.L. Romero-Rojo, C. Lund, S.A. Pless, Journal of Medicinal Chemistry, 2017. 60(19): p. 8192-8200.

D.S. Wishart, C. Knox, A.C. Guo, S. Shrivastava, M. Hassanali, P. Stothard, Z. Chang, J. Woolsey, Nucleic Acids Res, 2006. 34(Database issue): p. D668-72.

S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton, Nucleic Acids Research, 2020. 49(D1): p. D1388-D1395.

P. Zhang, F.J. Sigworth, C.M. Canessa, J Gen Physiol, 2006. 127(2): p. 109-17.

G. Wu, D.H. Robertson, C.L. Brooks III, M. Vieth, Journal of Computational Chemistry, 2003. 24(13): p. 1549-1562.

Downloads

Published

2021-09-30

How to Cite

NICULAE, R., MERNEA, M. ., GHICA, L., & MIHĂILESCU, D. F. (2021). A COMPUTATIONAL STUDY ON Ca²⁺ MODULATION OF ASIC 1 PHARMACOLOGIC PROPERTIES. Studia Universitatis Babeș-Bolyai Chemia, 66(3), 123–139. https://doi.org/10.24193/subbchem.2021.3.07

Issue

Section

Articles

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.