POLYLACTIC ACID INTERACTIONS WITH BIOCERAMIC SURFACES

Authors

  • Izabella IRSAI Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania.
  • Adrian M.V. BRÂNZANIC Babeş-Bolyai University, Institute of Interdisciplinary Research in Bio-Nano-Sciences, 42 Treboniu Laurian str., RO- 400271, Cluj-Napoca, Romania. https://orcid.org/0000-0002-4166-0131
  • Radu SILAGHI-DUMITRESCU Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. *Corresponding author: radu.silaghi@ubbcluj.ro https://orcid.org/0000-0003-3038-7747

DOI:

https://doi.org/10.24193/subbchem.2021.3.06

Keywords:

polylactic acid, hydroxyapatite, zirconia, molecular dynamics, weak interactions.

Abstract

Molecular dynamics simulations were employed in order to analyze the interfacial interaction of polylactic acids with zirconia and hydroxyapatite surfaces. The interactions of polymers on five crystallographic planes were simulated. Silane coupling agents can improve the interactions between the bioceramic surfaces and the polylactic acids. The effects of the coupling agents are more evident in the presence of hydroxyapatite surfaces. Weak interactions hold together the polylactic acids and bioceramic systems. These interactions are formed between the hydrogen atoms from methyl groups or from the main chains of the polylactic acids and the oxygens of the surfaces. Polylactic acids change their conformations after molecular dynamics simulations due to the interactions. The conformation changes are more obvious when silane coupling agents are added to the polylactic acids and bioceramic systems.

References

B. D. Ratner; A. S. Hoffman; F. J. Schoen; J. E. Lemons; Biomaterials Science, An Introduction to Materials in Medicine (Elsevier Academic Press, 2004).

P. F. Manicone; P. Rossi Iommetti; L. Raffaelli; J. Dent. 2007, 35, 819–826.

J. R. Piascik; S. D. Wolter; B. R. Stoner; Dent. Mater. 2011, 27, e99–e105.

A. Attia; F. Lehmann; M. Kern; Dent. Mater. 2011, 27, 207–213.

R. L. Smith; C. Villanueva; J. K. Rothrock; C. E. Garcia-Godoy; B. R. Stoner; J. R. Piascik; J. Y. Thompson; Dent. Mater. 2011, 27, 779–785.

R. Amaral; M. Özcan; M. A. Bottino; L. F. Valandro; Dent. Mater. 2006, 22, 283–290.

S. Kitayama; T. Nikaido; R. Takahashi; L. Zhu; M. Ikeda; R. M. Foxton; A. Sadr; J. Tagami; Dent. Mater. 2010, 26, 426–432.

M. N. Aboushelib; H. Mirmohamadi; J. P. Matinlinna; E. Kukk; H. F. Ounsi; Z. Salameh; Dent. Mater. 2009, 25, 989–993.

J. P. Matinlinna; L. V. J. Lassila; P. K. Vallittu; J. Dent. 2006, 34, 740–746.

J. R. Piascik; E. J. Swift; J. Y. Thompson; S. Grego; B. R. Stoner; Dent. Mater. 2009, 25, 1116–1121.

J. P. Matinlinna; T. Heikkinen; M. Özcan; L. V. J. Lassila; P. K. Vallittu; Dent. Mater. 2006, 22, 824–831.

R. Di Maggio; S. Dirè; E. Callone; F. Girardi; G. Kickelbick; Polymer (Guildf). 2010, 51, 832–841.

R. P. Singh; J. D. Way; S. F. Dec; J. Memb. Sci. 2005, 259, 34–46.

J. Han; C. Zuo; Q. Gu; D. Li; X. Wang; G. Xue; Appl. Surf. Sci. 2008, 255, 2316–2321.

A. Casucci; E. Osorio; R. Osorio; F. Monticelli; M. Toledano; C. Mazzitelli; M. Ferrari; J. Dent. 2009, 37, 891–897.

J. F. Mano; R. A. Sousa; L. F. Boesel; N. M. Neves; R. L. Reis; Compos. Sci. Technol. 2004, 64, 789–817.

M. Darder; P. Aranda; E. Ruiz-Hitzky; Adv. Mater. 2007, 19, 1309–1319.

R. Murugan; S. Ramakrishna; Compos. Sci. Technol. 2005, 65, 2385–2406.

J. Russias; E. Saiz; R. K. Nalla; K. Gryn; R. O. Ritchie; A. P. Tomsia; Mater. Sci. Eng. C 2006, 26, 1289–1295.

L. Fang; Y. Leng; P. Gao; Biomaterials 2006, 27, 3701–3707.

E. Smolko; G. Romero; Radiat. Phys. Chem. 2007, 76, 1414–1418.

X. Zhang; Y. Li; G. Lv; Y. Zuo; Y. Mu; Polym. Degrad. Stab. 2006, 91, 1202–1207.

Y. Zuo; Y. Li; J. Li; X. Zhang; H. Liao; Y. Wang; W. Yang; Mater. Sci. Eng. A 2007, 452–453, 512–517.

M. Todo; S. D. Park; K. Arakawa; Y. Takenoshita; Compos. Part A Appl. Sci. Manuf. 2006, 37, 2221–2225.

H. ping Zhang; X. Lu; Y. Leng; L. Fang; S. Qu; B. Feng; J. Weng; J. Wang; Acta Biomater. 2009, 5, 1169–1181.

L. M. Mathieu; T. L. Mueller; P. E. Bourban; D. P. Pioletti; R. Müller; J. A. E. Månson; Biomaterials 2006, 27, 905–916.

P. . De Santis; J. Kocacs; 1968, 6, 299–306.

Y. Zhao; D. G. Truhlar; Theor. Chem. Acc. 2008, 120, 215–241.

I. Irsai; A. Lupan; C. Majdik; R. Silaghi-Dumitrescu; Stud. Univ. Babes-Bolyai Chem. 2017, 62, 495–513.

I. Irsai; C. Majdik; A. Lupan; R. Silaghi-Dumitrescu; J. Math. Chem. 2012, 50, 703–733.

R. M. Wilson; J. C. Elliott; S. E. P. Dowker; Am. Mineral. 1999, 84, 1406–1414.

A. K. Rappe; C. J. Casewit; K. S. Colwell; W. A. Goddard III; W. M. Skiff; J. Am. Chem. Soc. 1992, 114, 10024–10035.

2017 Dassault Systèmes BIOVIA, Materials Studio, 2017, San Diego: Dassault Systèmes.

Downloads

Published

2021-09-30

How to Cite

IRSAI, I., BRÂNZANIC, A. M., & SILAGHI-DUMITRESCU, R. (2021). POLYLACTIC ACID INTERACTIONS WITH BIOCERAMIC SURFACES . Studia Universitatis Babeș-Bolyai Chemia, 66(3), 107–121. https://doi.org/10.24193/subbchem.2021.3.06

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 14 15 16 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.