EFFECTS OF SWEETENERS AND STORAGE ON THE ACIDITY, SOLUBLE SOLIDS AND SENSORIAL PROFILE OF LINGONBERRY JAMS
DOI:
https://doi.org/10.24193/subbchem.2021.4.07Keywords:
titratable acidity, total soluble solids, sucrose, sweeteners, sensory properties.Abstract
In this study, seven jam formulations were prepared, starting with the basic formulation, containing sucrose. This sweetener was replaced by fructose, erythritol, brown sugar, coconut sugar, stevia and saccharine, making these formulations a good alternative, some of them being also suitable for diabetic patients. Titratable acidity (TA) and total soluble solids (TSS) of lingonberry jams were evaluated for changes in jam quality during storage at 4°C, 25°C (under light conditions) and 25°C (under dark conditions) for 60 days. Moreover, a sensory evaluation was performed after 180 days of storage at 4°C to assess its consumer acceptance as compared to jam made with sucrose. During storage, TA and TSS increased in the case of all samples regardless of temperature conditions. ANOVA analysis of results revealed that the changes in TA and TSS were significantly affected by the type of sweetener used in jam formulation (p<0.05). Jams formulated with coconut sugar and stevia were assessed by the sensory panel as the most acceptable.References
R. M. Abolila; H. Barakat; H. A. El-Tanahy; H. A. El-Mansy; Food Sci. Nutr., 2015, 6, 1229–1244.
V. R. Souza; P.A. Pereira; A. C. M. Pinheiro; H. Bolini; S.V. Borges; F. Queiroz; Int. J. Food Sci. Technol., 2013, 48, 1541–1548.
C. Mane; M. Loonis; C. Juhel; C. Dufour; C. Malien-Aubert; J. Agric. Food Chem, 2011, 59, 3330-3339.
M. Toivanen; S. Huttunen; S. Lapinjoki; C. Tikkanen-Kaukanen; Phytother Res., 2011, 25, 828-832.
A. Vilela; S. Matos; A. S. Abraão; A. M. Lemos; F. M. Nunes; J. Food Process, 2015, 2015, 1-14.
S. Basu; U. S. Shivhare; J. Food Eng., 2010, 100 (2), 357–365.
Y. Akanksha; G. Gulia; Y. Bhuvnesh; Int. J. Sci. Eng., 2020, 9(1), 4079-4083.
M. Belovik; A. Torbika; I. P. Lijakovic; J. Mastilovik; Food Chem., 2017, 237, 1226-1233.
M. Grembecka; Eur Food Res Technol., 2015, 241, 1–14.
R. Lemus-Mondaca; A. Vega-Gálvez; L. Zura-Bravo; K. Ah-Hen; Food Chem., 2012, 132, 1121–1132.
M. R. Mora; R. Dando; Compr Rev Food Sci Food Saf., 2021, 1–30.
G. E. DuBois; I. Prakash; Annu Rev Food Sci Technol., 2012, 3, 353–380.
S. Basu; U. S. Shivhare; T. V. Singh; J. Food Eng, 2013, 114, 465–476.
K. C. Foletto; B. A. Melo Batista; A. M. Neves; F. deMatos Feijó; C.R. Ballard; M. F. Marques Ribeiro; M. C. Bertoluci; Appetite, 2016, 96, 604–610.
A. Muhammad; Y. Durrani; A. Zeb; M. Ayub; J. Ullah; Sarhad J. Agric.,2008, 24 (3), 461-467.
R. Sutwal; J. Dhankhar; P. Kind; R. Mehla; Int. J. Curr. Res., 2019, 11(4), 9-16.
N. Touati; M. P. Tarazona-Díaz; E. Aguayo; H. Louaileche; Food Chem., 2014, 145, 23–27.
E.B. Ehsan; Z.P. Naeem; A. Ghafoor; M.S. Bahtti; Pak. J. Food Sci., 2002, 12 (3-4), 21-24.
O. O. Awolu; G. O. Okedele; M. E. Ojewumi; G. F. Oseyemi; J. Int. J. Biotechnol. Food Sci., 2018, 3(1), 7-14.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.