STABLE AND EFFICIENT BIOPOLYMERIC NANOCOMPOZITE OF CANDIDA ANTARCTICA LIPASE B
DOI:
https://doi.org/10.24193/subbchem.2023.2.04Keywords:
CaL-B, nanofibers, polyvinyl alcohol, polylactic acid, EKRAbstract
The catalytic performance of various biocatalysts obtained by the adsorption of lipase B from Candida antarctica (CaL-B) onto and into polyvinyl alcohol (PVA) and polylactic acid (PLA) nanofibers were tested in the kinetic resolution of racemic 1-benzo[b]thiophen-2-yl-ethanol by transesterification. Best performance regarding reaction velocity and selectivity was registered for CaL-B adsorbed onto PLA nanofibers. The high operational stability of this biocatalyst was confirmed in recycling experiments, after 5 cycles the biocatalyst maintained 86.6% of its initial activity. The optimal process parameters in continuous flow mode also were established.
References
S. Datta; L. R. Christena; Y. R. S. Rajaram; Biotech, 2013, 3(1), 1–9.
J. Zdarta; A. S. Meyer; T. Jesionowski; M. Pinelo; Catalysts, 2018, 8, 92.
A. H. Rather; R. S. Khan; T. U. Wani; M. A. Beigh; F. A Sheikh; Biotechnol. Bioeng., 2022, 119, 9–33.
D. Balogh-Weiser; C. Németh; F. Ender; B. Gyarmati; A. Szilágyi; L. Poppe; Electrospun Nanofibers for Entrapment of Biomolecules. In Electrospinning Method Used to Create Functional Nanocomposites Films, 1st ed.; T. A. Tański, P. Jarka, W. Matysiak Eds.; IntechOpen Limited: London, UK, 2018, DOI: 10.5772/intechopen.76068.
MSDS-Europe. https://www.msds-europe.com/ro/ (accessed on 12 June 2022)
I. Eş; J. D. G. Vieira; A. C. Amaral; Appl. Microbiol. Biotechnol., 2015, 99(5), 2065–2082.
A. A. Homaei; R. Sariri; F. Vianello; R. Stevanato; J. Chem. Biol., 2013, 6(4), 185–205.
M. Dehghani; M. Naseri; H. Nadeem; M. M. Banaszak Holl; W. Batchelor;
J. Environ. Chem. Eng., 2022, 10, 108686.
P. H. Foroushani; E. Rahmani; I. Alemzadeh; M. Vossoughi; M. Pourmadadi;
A. Rahda; A. M. Díez-Pascual; Nanomaterials, 2022, 12, 3426.
J.-H. Lin; B.-C. Shiu; P.-W. Hsu; C.-W. Lou; J.-H. Lou; Polymers, 2022, 14, 4470.
J. Wu; Q. Li; G. Su; R. Luo; D. Du; L. Xie; Z. Tang; J. Yan; J. Zhou; S. Wang;
K. Xu; Cellulose, 2022, 29, 5745–5763.
Z. Vargas-Osorio; F. Ruther; S. Chen; S. Sengupta; L. Liverani; M. Michálek;
D. Galusek; A. R. Boccaccini; Biomed. Mater., 2022, 17, 045019.
V. Korniienko; Y. Husak; J. Radwan-Pragłowska; V. Holubnycha; Y. Samokhin; A. Yanovska; J. Varava; K. Diedkova; Ł. Janus; M. Pogorielov; Molecules, 2022, 27, 3343.
C. G. Spelmezan; L. C. Bencze; G. Katona; F.D. Irimie; C. Paizs; M. I. Tosa; Molecules, 2020, 25, 350.
V. Chauhan; D. Kaushal; V. K. Dhiman; S. S. Kanwar; D. Singh; V. K. Dhiman; H. Pandey; Front. Bioeng. Biotechnol., 2021, 10, 794411.
N. Chuaponpat; T. Ueda; A. Ishigami; T. Kurose; H. Ito; Polymers, 2020, 12(5), 1083.
K. H. Lam; A. J. Nijenhuis; H. Bartels; A. R. Postema; M. F. Jonkman; A. J. Pennings; P. Nieuwenhuis; J. Appl. Biomater., 1995, 6, 191–197.
M. Shah Mohammadi; M. N. Bureau; S. N. Nazhat; Polylactic Acid (PLA) Biomedical Foams for Tissue Engineering. In Biomedical Foams for Tissue Engineering Applications, Woodhead Publishing: Cambridge, UK, 2014; pp. 313–334.
G.-L. Gavril; M. Wrona; A. Bertella; M. Świeca; M. Rapa; J. Salafranca; C. Nerín; Food Chem. Toxicol., 2019, 132, 110662.
T. H. Qazi; R. Rai; A. R. Boccaccini; Biomaterials, 2014, 35, 9068–9086.
J. M. Lowen; J. K. Leach; Adv. Funct. Mater., 2020, 30, 1909089.
J. Ou; K. Liu; J. Jiang; D. A. Wilson; L. Liu; F. Wang; S. Wang; Y. Tu; F. Peng; Small, 2020, 16(27), 1906184.
J.-C. Park; T. Ito; K.-O. Kim; K.-W. Kim; B.-S. Kim; M.-S. Khil; H.-Y. Kim; I.-S. Kim; Polym. J., 2010, 42, 273–276.
A. Kumar; S. S. Han; Int. J. Polym. Mater. Polym. Biomater., 2017, 66(4), 159–182.
S. A. Braham; E.-H. Siar; S. Arana-Peña; D. Carballares; R. Morellon-Sterling; H. Bavandi; D. de Andrades; J. F. Kornecki; R. Fernandez-Lafuente; Molecules, 2021, 26, 968.
O. Pauli; A. Ecker; A. Cruz-Izquiero; A. Basso; S. Serban; Catalysts, 2022, 12, 989.
G. H. Podrepšek; Ž. Knez; M. Leitgeb; Front. Bioeng. Biotechnol., 2022, 10, 813919.
J. M. Bolivar; J. M. Woodley; R. Fernandez-Lafuente; Chem. Soc. Rev., 2022, 51, 6251–6290.
H. Sánchez-Morán; J. S. Weltz; D. K. Schwartz; J. L. Kaar; ACS Appl. Mater. Interfaces, 2021, 23, 26694–26703.
A. I. Benítez-Mateos; F. Paradisi; Enzyme Engineering: Methods in Molecular Biology. In Methods in Molecular Biology, F. Magnani, C. Marabelli, F. Paradisi Eds.; Springer US: New York, NY, USA, 2022, 2397, pp. 263–276.
M. R. Khan; Bull. Natl. Res. Cent., 2021, 45, 207.
M. Solymár; F. Fülöp; L. T. Kanerva; Tetrahedron Asymmetry, 2002, 13, 2383–2388.
J. Uppenberg; N. Öhrner; M. Norin; K. Hult; G. J. Kleyvegt; S. Patkar; V. Waagen; T. Anthonsen; T. A. Jones; Biochemistry, 1995, 34, 16838–16851.
Y. Xie; J. An; G. Yang; G. Wu; Y. Zhang; L. Cui; Y. Feng; J. Biol. Chem., 2014, 289, 7994–8006.
J. C. Rodríguez-Cabello; C. García-Arévalo; l. Quintanilla-Sierra; Biomimetic Protein Based Elastomers: Emerging Materials for the Future, Chapter 6, RSC Publishing: London, UK, 2022.
A. Kumar; Krishna; A. Sharma; J. Dhankhar; S. Syeda; A. Shrivastava; Chemistry Select, 2022, 7, e20220327.
P. Qu; M. Kuepfert; E. Ahmed; F. Liu; M. Weck; Eur. J. Inorg. Chem., 2021, 15, 1420–1427.
C. Dourado Fernandes; B. F. Oechsler; C. Sayer; D. de Oliveira; P. H. H. de Araújo; Eur. Polym. J., 2021, 169, 111–132.
K. Lang; H.-B. Quichocho; S. P. Black; M. T. K. Bramson; R. J. Linhardt; D. T. Corr; R. A. Gross; Biomacromolecules, 2022, 23, 2150–2159.
M. Sokołowska; J. Nowak-Grzebyta; E. Stachowska; M. El Frey; Materials, 2022, 15, 1132.
A. Liese; K. Seelbach; A. Buchholz; J. Haberland; Industrial Biotransformations, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2006, pp. 273–315.
A. Basso; S. Serban; Mol. Catal., 2019, 479, 110607.
E. M. Anderson; K. M. Larsson; O. Kirk; Biocatal. Biotransformation, 1998, 16, 181–204.
Q. Wu; P. Soni; M. T. Reetz; J. Am. Chem. Soc., 2013, 135, 1872–1881.
C. Paizs; M.-I. Tosa; V. Bódai; G. Szakács; I. Kmecz; B. Simándi; C. Majdik;
L. Nová; F.-D. Irimie; L. Poppe; Tetrahedron Asymmetry, 2003, 14, 1943–1949.
M.-I. Tosa; S. Pilbák; P. Moldovan; C. Paizs; G. Szatzker; G. Szakács; L. Novák; F.-D. Irimie; L. Poppe; Tetrahedron Asymmetry, 2008, 19, 1844–1852.
J. Brem; M.-I. Tosa; C. Paizs; A. Munceanu; D. Matcović-Čalogović; F.-D. Irimie; Tetrahedron Asymmetry, 2010, 21, 1993–1998.
C. G. Spelmezan; G. Katona; L.C. Bencze; C. Paizs; M.-I. Tosa; React. Chem. Eng., 2023, Accepted Manuscript, https://doi.org/10.1039/D2RE00515H.
A. M. Isloor; B. Kalluraya; K. S. Pai; Eur. J. Med. Chem., 2010, 45 (2), 825–830.
C. Bai; S. Ren; S. Wu; M. Zhu; G. Luo; H. Xiang; Eur. J. Med. Chem., 2021, 221, 113543.
M. Seethaler; T. Hertlein; E. Hopke; P. Köhling; K. Ohlsen; M. Lalk; A. Hilgeroth; Pharmaceuticals, 2022, 15(9), 1138.
R. S. Keri; K. Chand; S. Budagumpi; S. B. Somappa; S. A. Patil; B. M. Nagaraja; Eur. J. Med. Chem., 2017, 138, 1002–1033.
N. R. Mohamad; N. H. C. Marzuki; N. A. Buang; F. Huyop; R. A. Wahab; Biotechnol. Biotechnol. Equip., 2015, 29(2), 205–220.
P. L. Sóti; D. Weiser; T. Vigh; Z. K. Nagy; L. Poppe; G. Marosi; Bioprocess Biosyst. Eng., 2016, 39(3), 449–459.
C.-S. Chen; Y. Fujimoto; G. Girdaukas; C. J. Sih; J. Am. Chem. Soc., 1982, 14, 7294–7299.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.