HYDROGENOLYSIS OF PALM OIL DERIVED METHYL ESTERS OVER NIOBIUM AND TUNGSTEN BASE CATALYSTS

Authors

  • Mihai MARINESCU Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University of Ploiesti, Romania. Email: mihaimarinescu23@gmail.com.
  • Dragoș Mihael CIUPARU Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University, Ploiesti, Romania. Email: dciuparu@upg-ploiesti.ro.
  • Dorin BOMBOȘ Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University, Ploiesti; S.C. Medacril S.R.L, Mediaş, Romania. Email: bombos.dorin@gmail.com.
  • Cristina Maria DUȘESCU-VASILE Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University, Ploiesti, Romania. Email: cdusescu@upg-ploiesti.ro. https://orcid.org/0000-0002-2267-9531
  • Roxana Daniela POPOVICI Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University, Ploiesti, Romania. Email: dana_p@upg-ploiesti.ro. https://orcid.org/0000-0002-4974-8437
  • Vasile MATEI Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University, Ploiesti, Romania. Email: vmateiph@yahoo.com. https://orcid.org/0000-0002-4300-7195

DOI:

https://doi.org/10.24193/subbchem.2023.3.05

Keywords:

fatty acids methyl esters, W/Pd/γ-Al2O3-ZnZSM-5, Nb/Pd/γ-Al2O3-ZnZSM-5, catalyst, hydrogenolysis

Abstract

Vegetable oils are widely available in nature and are one of the most important sustainable feedstocks for biofuel production. W/Pd/γ-Al2O3-ZnZSM-5 and Nb/Pd/γ-Al2O3-ZnZSM-5 catalysts where prepared, characterized and tested in the hydrogenolysis reaction of palm oil fatty acid esters. The catalysts were characterized by determining the textural characteristics, the thermal stability, and the nature of the acidic sites. The appearance of particle agglomerations was evaluated by scanning electron microscopy (SEM). The resulting reaction products were n-aliphatic hydrocarbons, iso-aliphatic hydrocarbons, cycloaliphatic hydrocarbons, and arenes. No oxygenated organic compounds were identified in the collected liquid phase. At lower pressures, the deoxygenation process occurs to approximately 33% through the hydrogenation of the carboxylic bond and to approximately 67% through decarboxylation/decarbonylation, while at higher pressure than 60 bar the deoxygenation process proceeds preferentially through decarboxylation/decarbonylation.

References

Mortensen, P.M.; Grunwaldt, J.D.; Jensen, P.A.; Knudsen, K.G.; Jensen, A.D; Appl. Catal. A: General, 2011, 407, 1-19.

Di Vito Nolfi, G.; Gallucci, K.; Rossi, L; I J. Environ. Res. Public Healt, 2021, 18.

Jamil, F.; Al-Haj, L.; Al-Muhtaseb, A.a.H.; Al-Hinai, M.A.; Baawain, M.; Rashid, U.; Ahmad, M.N.M; Rev. Chem. Eng 2018, 34, 267-297.

Li, J.; Zhang, J.; Wang, S.; Xu, G.; Wang, H.; Vlachos, D.G; ACS Catalysis, 2019, 9, 1564-1577.

Ray, P.; Clément, M.; Martini, C.; Abdellah, I.; Beaunier, P.; Rodriguez-Lopez, J.-L.; Huc, V.; Remita, H.; Lampre, I; New J. Chem., 2018, 42, 14128-14137.

Cao, Y.; Shi, Y.; Bi, Y.; Wu, K.; Hu, S.; Wu, Y.; Huang, S; Fuel Process. Techn., 2018, 172, 29-35.

Jing, Z.-Y.; Zhang, T.-Q.; Shang, J.-W.; Zhai, M.-l.; Yang, H.; Qiao, C.-Z.; Ma, X.-Q; J. Fuel Chem.Technol.,2018, 46, 427-440.

Konwar, L.J.; Oliani, B.; Samikannu, A.; Canu, P.; Mikkola, J.-P; Biomass Conv. Bioref., 2022, 12, 51-62.

Cheng, J.; Zhang, Z.; Zhang, X.; Liu, J.; Zhou, J.; Cen, K; Fuel, 2019, 245, 384-391.

Nepomniashchii, A.A.; Buluchevskiy, E.A.; Koshevaya, Y.O.; Gulyaeva, T.I.; Lavrenov, A.V; AIP Conference Proceedings, 2020, 2301, 030013.

Hong, Y.-K.; Lee, D.-W.; Eom, H.-J.; Lee, K.-Y; Appl. Catal. B: Environmental, 2014, 150-151, 438-445.

Ardiyanti, A.R.; Gutierrez, A.; Honkela, M.L.; Krause, A.O.I.; Heeres, H.J; Appl. Catal. A: General, 2011, 407, 56-66.

Zerva, C.; Karakoulia, S.A.; Kalogiannis, K.G.; Margellou, A.; Iliopoulou, E.F.; Lappas, A.A.; Papayannakos, N.; Triantafyllidis, K.S; Catal. Today, 2021, 366, 57-67.

Shao, Y.; Xia, Q.; Liu, X.; Lu, G.; Wang, Y; Chem Sus Chem, 2015, 8, 1761-1767.

Srihanun, N.; Dujjanutat, P.; Muanruksa, P.; Kaewkannetra, P; Catalysts, 2020, 10.

Marinescu, M.; Popovici, D.R.; Bombos, D.; Vasilievici, G.; Rosca, P.; Oprescu, E.-E.; Bolocan, I; Reaction Kinetics, Mecha Catalysis, 2021, 133, 1013-1026.

Doukeh, R.; Bombos, M.; Bombos, D.; Vasilievici, G.; Radu, E.; Oprescu, E.-E; React. Kinet., Mech. Catal., 2021, 132, 829-838.

Doukeh, R.; Leostean, C.; Bolocan, I.; Trifoi, A.R.; Banu, I; Chem Select, 2021, 6, 3858-3868.

Doukeh, R.; Bombos, D.; Bombos, M.; Oprescu, E.-E.; Dumitrascu, G.; Vasilievici, G.; Calin, C.; Sci. Rep., 2021, 11, 6176.

Doukeh, R.; Juganaru, T.; Bolocan, I, Revista de chimie, 2019, 70, 3132-3135.

Zhang, X.; Lin, T.; Li, R.; Bai, T.; Zhang, G; Ind. Eng. Chem. Res., 2012, 51, 3541-3549.

Doukeh, R.; Râpă, M.; Matei, E.; Prodan, D.; Győrgy, R.; Trifoi, A.; Banu, I; Catalysts, 2023, 13.

Aryee, E.; Dalai, A.K.; Adjaye, J; Front. Chem. Eng., 2022, 3.

Kim, Y.; Moon, D; Cat. Surveys Asia, 2019, 23.

Kristiani, A.; Sudiyarmanto, S.; Aulia, F.; Hidayati, L.; Abimanyu, H; MATEC Web of Conferences, 2017, 101, 01001.

Dippong, T.; Goga, F.; Avram, A; Studia UBB Chemia, 2017, 62, 165-176.

Hermida, L.; Journal of Materials and Environmental Sciences, 2018, 9, 2328-2333.

Stepan, E.; Enascuta, C.-E.; Oprescu, E.-E.; Radu, E.; Radu, A.; Galan, A.-M.; Vasilievici, G.; Lavric, V.; Velea, S; Fuel, 2016, 172, 29-36.

Enascuta, C.E.; Stepan, E.; Bolocan, I.; Bombos, D.; Calin, C.; Oprescu, E.-E.; Lavric, V.; Waste Management, 2018, 75, 205-214.

Matei. V., Juganaru.T., Bombos. D., Borcea A. F., Marinescu C., Ganea R., Bombos M. M., OSIM, 2010, RO 126664 A2.

Calin, C.; Leostean, C.; Trifoi, A.R.; Oprescu, E.-E.; Wiita, E.; Banu, I.; Doukeh, R., Scientific Reports 2021, 11, 19053.

Doukeh, R.; Trifoi, A.; Bombos, M.; Banu, I.; Pasare, M.; Bolocan, I.O.N, Rev. Chim., 2018, 69, 396-399.

Dan, M.; Mihet, M.; Lazar, D.; Muresan, L. Studia UBB Chemia, 2016, 61, 137-154.

Oprescu, E.-E.; Enascuta, C.-E.; Doukeh, R.; Calin, C.; Lavric, V.;Renewable Energy, 2021, 176, 651-662.

Doukeh, R.; Bombos, M.; Bolocan, I.; Rev. Chim., 2019, 70, 2481-248.

Downloads

Published

2023-09-25

How to Cite

MARINESCU, M. ., CIUPARU, D. M. ., BOMBOȘ, D. ., DUȘESCU-VASILE, C. M. ., POPOVICI, R. D. ., & MATEI, V. . (2023). HYDROGENOLYSIS OF PALM OIL DERIVED METHYL ESTERS OVER NIOBIUM AND TUNGSTEN BASE CATALYSTS. Studia Universitatis Babeș-Bolyai Chemia, 68(3), 71–98. https://doi.org/10.24193/subbchem.2023.3.05

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.