Weak Interactions Between Hydracids / Binary Acids: Some Considerations from a DFT Analysis
DOI:
https://doi.org/10.24193/subbchem.2024.2.09Keywords:
hydracid, binary acid, noncovalent, DFT, supramolecularAbstract
Non-covalent interactions involving element-hydrogen contacts are a central part in supramolecular chemistry and play essential roles in biomolecular structure. Reported here is a systematic computational analysis of such interactions within XHn---YHm dimers, where X and Y are C, Si, N, P, O, S, F and Cl, respectively. Two functionals are employed – the widely used BP86 and the M06-2X functional especially designed for describing noncovalent interactions. The interaction energies are found to be correlated with charge separation to a degree of 80%, suggesting that these noncovalent interactions can be reasonably explained/predicted by their electrostatic component. Energy decomposition analyses on the other hand suggest that correlation effects are the underlying root of the interaction. The rarely discussed intermolecular vibrations are also analyzed and noted to sometimes intercede in the typical observation windows for molecular spectroscopy. Moreover, in some cases notable effects of the non-covalent interactions are noted upon internal vibrations of the partners.
References
Zhao, Y.; Truhlar, D. G. A J. Chem. Phys. 2006, No. 125, 194101–194118.
Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215–241.
Grimme, S. J. Comput. Chem. 2006, 27, 1787–1799. https://doi.org/10.1002/jcc.
Radu, L. BSc Diploma Paper: Studiul Interacțiunilor Necovalente. Studii Experimentale Și Teoretice, Babes-Bolyai University, 2014.
Silaghi-Dumitrescu, L.; Attia, A. A. A.; Silaghi-Dumitrescu, R.; Blake, A. J.; Sowerby, D. B. Inorg. Chim. Acta 2018, 475, 120–126. https://doi.org/10.1016/j.ica.2017.08.052.
Silaghi-Dumitrescu, R.; Lupan, A. Cent. Eur. J. Chem. 2013, 11 (3), 457–463.
Irsai, I.; Majdik, C.; Lupan, A.; Silaghi-Dumitrescu, R. J. Math. Chem. 2012, 50 (4), 703–733.
Carrascoza, F.; Zaric, S.; Silaghi-Dumitrescu, R. J. Mol. Graph. Model. 2014, 50, 125–133.
Irsai, I.; Pesek, S. Z.; Silaghi-Dumitrescu, R. Studia UBB Chemia. 2022, 67 (4), 47–72.
Irsai, I.; Lupan, A.; Majdik, C.; Silaghi-Dumitrescu, R. Studia UBB Chemia. 2017, 62 (4), 495–513.
Silaghi-Dumitrescu, R. Studia UBB Chemia. 2010, 60(1), 31–36.
Lupan, A.; Kun, A.-Z. Z.; Carrascoza, F.; Silaghi-Dumitrescu, R. Performance J. Mol. Model. 2013, 19 (1), 193–203.
Carrascoza Mayen, J. F.; Lupan, A.; Cosar, C.; Kun, A.-Z.; Silaghi-Dumitrescu, R. Biophys. Chem. 2015, 197, 10–17.
Pesek, S.; Lehene, M.; Brânzanic, A. M. V.; Silaghi-Dumitrescu, R. Molecules 2022, 27 (24), 8974.
Hobza, P.; Řezáč, J. Chem. Rev. 2016, 116 (9), 4911–4912.
Sexton, T. M.; Howard, J. C.; Tschumper, G. S. J. Phys. Chem. A 2018, 122 (21), 4902–4908.
Leverentz, H. R.; Truhlar, D. G. J Phys Chem A 2008, 112 (26), 6009–6016.
Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2005, 109 (25), 5656–5667.
Silaghi-Dumitrescu, R.; Silaghi-Dumitrescu, I. J. Inorg. Biochem. 2006, 100 (1), 161–166.
Attia, A. A. A.; Silaghi-Dumitrescu, R. A J. Mol. Graph. Model. 2016, 69, 103–110.
Xie, Y. M.; Schaefer, H. F.; Silaghi-Dumitrescu, R.; Peng, B.; Li, Q. S.; Stearns, J. A.; Rizzo, T. R. Chem. Eur. J. 2012, 18 (41), 12941–12944.
Attia, A. A. A.; Lupan, A.; Silaghi-Dumitrescu, R. RSC Adv. 2013, 3 (48), 26194–26204.
Brânzanic, A. M. V.; Ryde, U.; Silaghi-Dumitrescu, R. I J. Inorg. Biochem. 2020, 203, 110928.
Silaghi-Dumitrescu, R. A Studia UBB Chemia, 2007, 52 (2), 127–139.
Silaghi-Dumitrescu, R.; Silaghi-Dumitrescu, I. Rev. Roum. Chim. 2004, 49, 257–268.
Surducan, M.; Makarov, S. V.; Silaghi-Dumitrescu, R. Eur. J. Inorg. Chem. 2014, 34 (34), 5827–5837..
Attia, A. A. A.; Cioloboc, D.; Lupan, A.; Silaghi-Dumitrescu, R. J. Inorg. Biochem. 2016, 165, 49–53.
Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105 (8), 2999–3093.
Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102 (97), 1995–2001.
Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J. C. W. J. Phys. Chem. A 1998, 102 (26), 5074–5085.
SPARTAN ‘18 for Windows, Wavefunction Inc., 18401 Von Karman Avenue, Suite 370 Irvine, CA 92612. 2018.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; MontgomeryJr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, Revision E.01. Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, 2016. Gaussian, Inc.: Wallingford CT, 2016.
Lu, T.; Chen, F. J. Comput. Chem. 2012, 33 (5), 580–592.
Mitoraj, M. P.; Michalak, A.; Ziegler, T. J. Chem. Theory Comput. 2009, 5 (4), 962–975.
Michalak, A.; Mitoraj, M.; Ziegler, T. J. Phys. Chem. A 2008, 112 (9), 1933–1939.
Ziegler, T.; Rauk, A. Theor. Chim. Acta 1977, 46 (1), 1–10..
Cao, X.; Liu, S.; Rong, C.; Lu, T.; Liu, S. Chem. Phys. Lett. 2017, 687, 131–137.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.